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Abstract. We extend the formal developments for message sequence charts
(MSCs) to support scenarios with lost and found messages. We define a notion
of extended compositional message sequence charts (ECMSCs) which subsumes
the notion of compositional message sequence charts in expressive power but ad-
ditionally allows to define lost and found messages explicitly. As usual, ECMSCs
might be combined by means of choice and repetition towards (extended) com-
positional message sequence graphs. We show that—despite extended expressive
power—model checking of monadic second-order logic (MSO) for this framework
remains to be decidable. The key technique to achieve our results is to use an
extended notion for linearizations.

1 Introduction

In the development process of a large and complex communication protocol, one
usually starts with describing scenarios showing aspects of its desired behavior.
The scenarios may be combined to get a more complete view of the system. This
partial specification guides the realization of the resulting piece of hardware or
software, which, in turn, might be checked according to these scenarios.

Message Sequence Charts (MSCs), which are similar to UML’s sequence dia-
grams [2], are a prominent, standardized [10, 11], and graphical as well as textual
formalism to further this approach. An MSC defines a set of processes and a set
of communication actions between these processes. In the visual representation
of an MSC, processes are drawn as vertical lines. A labeled arrow from one line
to another corresponds to the communication event of sending the labeling value
from the first process to the second. Figure 1(a) gives an example of an MSC.

MSCs can be combined towards so-called high-level MSCs or MSC graphs
(MSGs)1 by means of choice and repetition. An MSG is a directed graph or
finite automaton whose edges are labeled with MSCs. Every path through this
graph corresponds to the sequential composition of the basic MSCs. In this way,
arbitrarily long and alternative scenarios may be obtained out of the given ones.

Since MSCs and MSGs are employed in the early design phase of a system, it
is essential to provide decent formal methods for analyzing them. In recent years,

? This research was supported in part by NSF CCR-9988409, NSF CCR-0086147, NSF CISE-
9703220, ARO DAAD19-01-1-0473, DARPA ITO MOBIES F33615-00-C-1707, and ONR
N00014-97-1-0505.

1 In the following, we will use the more suggestive notion of MSGs.



a lot of work was done to support this issue, however, usually for a restricted
class of MSCs.

The first question which arises in this context is whether a set of MSCs is re-
alizable. In the seminal work of [9] and [8], regular sets of MSCs were defined and
studied for this reason. The main idea was to study linearizations of MSCs. A lin-
earization of an MSC is a sequence of all its send and receive events whereby the
partial order imposed by the graphical representation of the MSC is respected. It
was shown that regular sets of MSCs are the ones which are definable by monadic
second-order logic (MSO) over MSCs. This work was later extended in [5] to a
larger class of MSCs namely one which also allows MSCs with message overtak-
ing. Therefore, a conceptually new way to model MSCs and their linearizations
was introduced.

Another approach is to analyze MSGs. Model checking of MSGs with respect
to an automaton specification was studied in [1]. More specifically, the question
whether the sequences of send and receive actions obtained by linearizing the
MSCs established by finite paths through the MSG adhere to some MSO formula
(over words) was tackled. This problem is also known as linearization model
checking. It turned out that model checking becomes undecidable in general,
unless some boundedness assurance is guaranteed (in the case of the more natural
asynchronous composition of MSCs).

On the contrary, the model-checking problem of MSGs against MSO formulas
which are interpreted directly on MSCs and not on its linearizations was shown
to be decidable [13].

A weakness in the expressiveness of MSGs was pointed out in [7] and a suit-
able extension towards so-called high-level compositional MSCs (HCMSCs) was
proposed. It was shown that basic properties of these HCMSCs are undecidable.
[14] slightly restricts the class of HCMSCs towards compositional message se-
quence graphs (CMSGs), still maintaining the main features of HCMSCs. They
show that monadic second-order logic over these CMSGs is decidable. However,
not every CMSC-labeled graph is a CMSG. While it is decidable whether such
a structure is a CMSG, it might bother the user of CMSGs to understand the
restrictions imposed to obtain a CMSG.

In this paper, we extend the notion of CMSGs to support aspects of the
message-sequence–chart standard [11] which have been excluded in the previ-
ous works. Our goal is to allow so-called black and white holes, which refer to
unmatched send and receive events. This concept allows the modeling of lost
and found messages, respectively. Thus, one is able to describe behaviors of a
protocol that catches up after a message has been lost. We present scenarios for
the Alternating-Bit Protocol giving evidence for the adequacy of our formalism.
Furthermore, our formalism also supports message overtaking.

Note that in some definitions for compositional message sequence charts, one
might end up with unmatched send or receive events. However, this can only
happen to a limited extent. For example, for left-closed CMSCs defined in [7], it
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is possible that a send event lacks its corresponding receive event. But in that
case, no further matched send event of the same type will be able to follow.

In the following, we abbreviate our extended compositional message sequence
graphs by ECMSGs and call our extended version of a compositional message
sequence chart ECMSC. It turns out that all scenarios definable in terms of
CMSGs can also be defined by ECMSGs. Due to the fact that ECMSGs support
the definition of holes and message overtaking, we easily obtain the result that
ECMSGs are strictly more expressive than CMSGs.

Despite the additional expressive power, we show that model checking of
MSO formulas remains to be decidable in our extended setting. We combine
ideas of [5] and proof techniques of [14] and [5] to obtain our results. As opposed
to CMSGs defined in [14], every ECMSC-labeled graph is an ECMSG. Thus, no
further test whether the setting given by a user is indeed an (E)CMSG has to
be applied.

Finally, we show in which way our model can be related to so-called Mazurkie-
wicz-trace–closed languages. As pointed out by [14], this is the cornerstone for
applying the rich theory of local temporal logics over traces such as TrPTL [19].

Organization of the paper In the next section, we define extended compositional
MSCs and ECMSGs. We give a set of scenarios for the Alternating-Bit Protocol
in Section 3. In Section 4, we study the correspondence of ECMSGs and regu-
lar word languages. Model checking procedures for ECMSGs are considered in
Section 5.
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Fig. 1. An MSC and its formalization

2 Message Sequence Charts and Graphs

Before we present our extensions, let us start with the customary formal definition
of message sequence charts, in which an MSC is understood of as a partial order
of send and receive events, which can be matched subject to a bijective mapping:

Let P be a finite, nonempty set of process names (or just processes) and Mess
a finite message alphabet. Let further ΣS := {Sq

p(a) | p, q ∈ P, p 6= q, a ∈ Mess}
and ΣR := {Rq

p(a) | p, q ∈ P, p 6= q, a ∈ Mess} denote the sets of send and
receive actions, respectively, and Σ := ΣS ∪ ΣR the set of actions. An action
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Sq
p(a) stands for sending a message a from process p to process q, and Rq

p(a)
represents the corresponding receive action, which is then executed by process
q. In this sense, Corr := {(Sq

p(a),R
q
p(a)) | p, q ∈ P, p 6= q, a ∈ Mess} relates

those actions that are corresponding. From now on, all premises and definitions
are made with respect to a fixed set P of processes and a fixed message alphabet
Mess. Thus, Σ and the derived symbols are also fixed. Throughout the paper,
Dom(f) and Range(f) will furthermore denote the domain and the range of a
function f , respectively.

A Message Sequence Chart (MSC) is a tuple m = (E,�, t, o, µ, `) where

– E is the finite set of events.

– t : E → {S, R} is the type function indicating whether we deal with a send or
receive event , i.e., t(e) = S or respectively t(e) = R.

– o : E → P, the process function, binds each event to a process.

– µ : t−1(S) → t−1(R) is the bijective matching function.
– ` : E → Σ is the labeling function such that, for each e ∈ E, t(e) = S implies

`(e) = S
o(µ(e))
o(e) (a) and `(µ(e)) = R

o(µ(e))
o(e) (a)

for some a ∈ Mess. In other words, events matched by µ are labeled by `

with corresponding action labels.

– �⊆ E×E is a partial order that is total on each process line and orders receive
events after their originating send event. Thus, we require � to satisfy the
following:

• �p:=� ∩(o−1(p) × o−1(p)) is a total order for each p ∈ P
• �= (

⋃
p∈P �p ∪{(e, µ(e)) | t(e) = S})∗

To simplify our notation, we will also use o to denote a mapping associating
a label from Σ with its corresponding process, i.e., o(Sq

p(a)) = o(Rp
q(a)) = p.

The formalization of an MSC, as illustrated in Figure 1(b), is a directed graph
in which the nodes, according to `, are labeled with elements from Σ and where
the arrows depict µ. Furthermore, a vertical line corresponds to �p for a suitable
p ∈ P.

An MSC is just a finite object showing a scenario for an execution of an
underlying system. To derive a more sophisticated description of the system, one
aims at combining several MSCs. Therefore, however, it turns out to be helpful,
if one allows so-called “unmatched” send events, which then might be gathered
in a subsequent MSC by a corresponding “unmatched” receive event, as pointed
out in [7]. Furthermore, we want to be able to describe scenarios in which, on
the one hand, there has been a send event but no corresponding receive event2,
or, on the other hand, a message is received that has not been sent3. In terms
of MSC standard [10], we want to support black and white holes, respectively.
Thus, we extend our definition accordingly:

2 e.g., because the message got lost
3 e.g., because some message from some previous session remains in the input channel
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Definition 1 (Extended Compositional Message Sequence Chart). An
Extended Compositional Message Sequence Chart (ECMSC) is just an MSC
(E,�, t, o, µ, `, λ) as above except for t, which is henceforth a function E →
{S, R, U,⊥} such that an event e with t(e) ∈ {S, R} is labeled as stipulated above
and t(e) ∈ {U,⊥} implies o(`(e)) = o(e). In addition, λ is a mapping t−1(U) →
IN, called matching information, such that

1. for each σ ∈ Σ and each natural number n, |{e ∈ E | t(e) = U, `(e) = σ, and
λ(e) = n}| ≤ 1, and

2. for all e ∈ E with t(e) = U and `(e) ∈ ΣS , there is no event e′ with t(e′) = U,
(`(e), `(e′)) ∈ Corr , e′ 6� e, and λ(e) = λ(e′).
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P Q

1

2

2

not an ECMSC

P Q

1

2

2

an ECMSC

Fig. 2. Two counter-examples and an example

Let us study the previous definition in more detail. As before, if the type
of an event is S or R, we deal with a send or receive event corresponding to a
single message. The symbol ⊥ can be employed to explicitly define a hole (a lost
message or event). The symbol U denotes an unmatched message event which
can possibly find a suitable communication partner in a subsequent or previous
ECMSC. To give information in which way unmatched events of type U should be
combined for two given ECMSCs, we employ the functions ` and λ. Obviously, a
white hole (an unmatched receive event), can only be matched with a black hole
(an unmatched send event). We do not want to model misdirected messages, so a
send message from p to q may only be received by q—to ensure this, the labeling
function ` provides the required information.

To allow for a more complex modeling, the matching information λ is used
to identify corresponding send and receive events. As we will see below, an un-
matched send event with number k usually matches the first suitable unmatched
receive event that has number k, which should be one event of a subsequent
ECMSC. Therefore, we require λ to be in the way that, within a given ECMSC,
there is no corresponding receive event which could be matching to a send event
(cf. condition 2 of Definition 1). For instance, look at Figure 2, where, in each dia-
gram, the use of only one message a ∈ Mess is assumed and a possibly unmatched
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message, as indicated, is sent to (received from, respectively) the neighbored pro-
cess line. The diagram in the middle is no ECMSC, because condition 2) is not
fulfilled. There is no reason not to match the send event with number 2 with
the receive event numbered 2. However, the third diagram in this line, though
it employs unmatched messages of type U with corresponding labelings and the
same matching information, is an ECMSC. The unmatched receive event with
number 2 can now only be matched with one of a previous ECMSC.

For the same reason, we do not allow to carry two unmatched events of type
U with the same labeling and matching information (cf. condition 1 of Definition
1). Reusing the same number k for a send event, for example, means intuitively
that the first message got lost and should therefore be labeled with ⊥. Thus, the
diagram on the left of Figure 2 is not an ECMSC.

Another approach to deal with lost and found messages formally, is to add
one process for each channel, i.e. pair of processes. For example, for the ECMSC
shown in Figure 3(a), one might add a process PQ and simulate every message
from P to Q by a message from P to PQ followed by one from PQ to Q (cf.
Figure 3(b)). Lost or found messages could then be represented by leaving out
the second or the first message, respectively. So, one could specify and reason
in the framework of CMSCs instead of ECMSCs. However, finding a similar
message to the one lost could not be distinguished from passing on the original
one (see lower part in Figure 3(a) and Figure 3(b)), which is undesirable especially
when the messages of the scenarios are obtained by abstracting concrete message
values to a finite number of messages. While the MSC on the left hand side has
lost messages, the second does not. Furthermore, message overtaking cannot be
modeled. Finally, explaining why a formula is not valid for the given scenario
is more difficult, if the underlying scenario is changed and n(n − 1) processes
are added to n processes. Thus, we are convinced that our direct approach is
preferable to a simulating one, last but not least, for complexity reasons.

P Q

⊥

⊥

m1:

P PQ Q

m2 :

(a) (b)

Fig. 3. Simulating lost and found messages

Before we turn towards the formal definition of the concatenation of ECM-
SCs, let us introduce some abbreviations: Given an ECMSC m as above, let
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Sm := t−1(S), Su
m := t−1(U) ∩ `−1(ΣS), and Um, ⊥m, Rm and Ru

m be defined
analogously. Furthermore, we set λ(m) := Range(λ) as well as, for a collection
M = {m1, . . . ,mk} of ECMSCs, λ(M) :=

⋃
i∈{1,...,k} λ(mi).

Let us now consider the concatenation of ECMSCs. The main idea is that
we wish to specify the behavior of a system that first follows ECMSC m1 and
then ECMSC m2 by defining a single ECMSC m1 · m2 that allows exactly the
desired behaviors. In our setting, we use asynchronous concatenation, i.e., any
process that has completed all events in m1 may proceed to m2. To concatenate
black and white holes, we employ a function µm1,m2 , which formally captures the
previously mentioned ideas.

For ECMSCs mi = (Ei,�i, ti, oi, µi, `i, λi), i = 1, 2, with disjoint sets of
events (if this is not the case, the events have to be renamed accordingly), let
µm1,m2 : Su

m1
→ Ru

m2
be a partial function given by µm1,m2(e) = e′ iff both

(`1(e), `2(e
′)) ∈ Corr and λ1(e) = λ2(e

′). Observe that, due to conditions 1) and
2) of Definition 1, µm1,m2 is in fact well-defined. The product of m1 and m2,
denoted by m1 ·m2, is defined to be the ECMSC m = (E,�, t, o, µ, `, λ) where

– E = E1 ∪E2

– �= (�1 ∪ �2 ∪ {(e, e′) ∈ E1 ×E2 | o1(e) = o2(e
′)} ∪ µm1,m2)

∗

– Sm = Sm1 ∪ Sm2 ∪ Dom(µm1 ,m2)
Rm = Rm1 ∪Rm2 ∪ Range(µm1,m2)
⊥m = ⊥m1 ∪ ⊥m2

∪ {e ∈ Su
m1

\Dom(µm1,m2) | ∃e
′ ∈ Su

m2
: `1(e) = `2(e

′), λ1(e) = λ2(e
′)}

∪ {e ∈ Ru
m2

\Range(µm1,m2) | ∃e
′ ∈ Ru

m1
: `2(e) = `1(e

′), λ2(e) = λ1(e
′)}

Um = E\(Sm ∪Rm ∪ ⊥m)
– o = o1 ∪ o2,
– µ = µ1 ∪ µ2 ∪ µm1,m2

– ` = `1 ∪ `2
– λ = (λ1 ∪ λ2)|Um

In other words, the events of m comprise the ones of m1 and m2, and the
partial order is obtained by the reflexive and transitive closure of the orders of
m1 and m2, ordering the events of m2 of a process p after the events of m1

of process p, and the order imposed by the newly matching send and receive
events, denoted by (the graph of) the function µm1,m2 . The send and receive
events of m are augmented by the events related by µm1,m2 . The lost events
are the previous ones together with the unmatched send events of type U in m1

for which a subsequent event with the same label and matching information (in
m2) exists, and, dually, the unmatched receive events of type U in m2 which are
preceded by events with the same label and number (in m1). All remaining events
remain unmatched ones of type U and may be used for further concatenation.

Consider the ECMSCs shown in Figure 4 where, as before, the use of only
one message a ∈ Mess is assumed and a possibly unmatched message is sent to
the neighbored process line. We have m1 ·m2 = m4, resulting in an ECMSC with
message overtaking (i.e., with equally labeled arrows which are not arranged in a
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FIFO manner).4 Observe that the unmatched send and receive events numbered
2 have been matched and that the first send event numbered 1 turned into a lost
one as it is followed by an equal send event of m2 that is likewise numbered 1.
Furthermore, m4 ·m3 = m5, matching the events numbered 1.
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P Q

⊥

1

m4 :

P Q

⊥

2

m5 :

P Q

1

⊥

m6 :

Fig. 4. Some ECMSCs
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Fig. 5. Exemplary linearizations

We easily see that · is not associative. For example, while (m1 ·m2) ·m3 = m5,
m1 · (m2 · m3) yields m6. In the following, we let · associate to the left, i.e.,
m1 ·m2 ·m3 denotes (m1 ·m2) ·m3.

Another equivalence will turn out to be important, which does not distinguish
between ECMSCs that only differ in the type and matching information of un-
matched events: Given ECMSCs mi = (Ei,�i, ti, oi, µi, `i, λi), i = 1, 2, we write
m1 ≡ m2 iff (E1,�1, t1|Sm1∪Rm1

, o1, µ1, `1) and (E2,�2, t2|Sm2∪Rm2
, o2, µ2, `2) are

isomorphic. For example, referring to Figure 4, m5 ≡ m6. Furthermore, m5 is
equivalent to the ECMSC which we obtain from m5 by replacing 2 with 3. The

4 Given ECMSCs m and m′, we write m = m′ iff m and m′ are isomorphic.
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equivalences = and ≡ over ECMSCs are extended to sets as customary. In par-
ticular, M1 ≡M2 iff {[m]≡ | m ∈M1} = {[m]≡ | m ∈M2}.

As we have defined the concatenation of ECMSCs, we are now ready to define
ECMSGs:

Definition 2 (Extended Compositional Message Sequence Graph). An
Extended Compositional Message Sequence Graph (ECMSG) is a finite automa-
ton H = (States ,Π, δ, sin , F, χ), i.e., States is a nonempty finite set of states, Π
is a finite alphabet, δ ⊆ States×Π×States is the set of transitions, sin ∈ States
is the initial state, and F ⊆ States is the set of final states. In addition, χ maps
each letter h from Π to an ECMSC χ(h).

The word language L(H) ⊆ Π∗ is defined in the expected manner. Moreover, H
defines an ECMSC language M(H) := {χ(h1 . . . hn) | h1 . . . hn ∈ L(H), hi ∈ Π}
where, for n ≥ 1, χ(h1 . . . hn) := χ(h1) · . . . · χ(hn), and χ(ε) is set to be the
empty ECMSC. Let furthermore λ(H) := λ(Range(χ)). We give a large example
for an ECMSG in the next section. To get an idea of the previous definition for
the moment, look at H′ in Figure 6.

Note that, since FIFO matching is assumed in CMSGs, a CMSC lacks a
matching information. As a CMSG in the style of [14] only traces a bounded
number of unmatched events within a path—every accepting path must guar-
antee that the behavior is complete, i.e., without unmatched events—we can,
involving some combinatorial considerations, find an equivalent ECMSG for it.
This justifies our notion of extended CMSGs.

More precisely, given a CMSG H, we are looking for an ECMSG H′ such
that M(H′) = M(H). Basically, the states of H′ are copies of the ones of H
but enriched by some additional information. Namely, for each send action, they
contain a sequence of natural numbers that depicts the matching information
of currently unmatched messages, respectively, which is unique for each state.
Similarly, the ECMSCs used in H′ are copies of the CMSCs from H whereby each
unmatched message in a CMSC (without any matching information) becomes an
unmatched event in H′ of type U with a matching information according to the
additional parameters of the current state.

For example, look at Figure 6, which refers to the prominent producer–and–
consumer protocol that cannot be described by means of a simple MSG [7].
Again, we assume the use of one message only. In H′, whenever a path goes
through state s′1, the first unmatched send event in the corresponding ECMSC
so far will be labeled 1 (recall that we simulate a FIFO behavior). Thus, in
each outgoing ECMSC, the first unmatched receive event is likewise labeled 1,
respectively. Furthermore, as the matching information of state s′1 is depicted by
the sequence (1, 2), the first unmatched send event in m3,1

2 contains the matching
information 3. Apart from the above restrictions, the transitions of H ′ could be
understood as an unwinding of H.
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As we did not define CMSGs formally and as the detailed algorithm of trans-
forming CMSGs into ECMSGs is rather technical and would not provide further
insights, we confine ourselves to giving the above example.
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Fig. 6. From CMSGs to ECMSGs

3 A System Specification

Let us formalize scenarios for a variant of the well-known Alternating-Bit Protocol
(ABP) [16] to exemplify how to use our framework.

The ABP was designed to guarantee a reliable data transmission through
insecure channels, which may loose or duplicate a message. The general idea is
that a sender process Send sends a message together with a control bit b to a
receiver process Receive, which, in turn, sends the control bit back. As soon as
Send receives the control bit b, it sends the next chunk of data, now together
with 1−b. If, however, the control bit has not been returned to the sender within
a given time frame, the sender will resend the message using b, because it thinks
that the data has not been delivered. The control bit, on which we concentrate
in our further analysis, might be used to detect errors in the communication.
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Fig. 7. A scenario of the Alternating-Bit Protocol

A typical scenario, which we might expect to see, is shown in Figure 7(a).
We show a sender process Send and a receiver process Receive each together
with a timer process.5 Send transmits a bit b towards the receiver, which is lost.
Since it sets a timer, the timer expires and Send retransmits the data. Now,
we see that the data has been transmitted but the acknowledgement is lost. As
Receive does not get any new data, it assumes that the acknowledgement got
lost and retransmits it. At the same time, Send retransmits the data since it
did not receive an acknowledgement. Receive will ignore the retransmitted data
since the same bit was used, indicating that we indeed had a retransmission.

Let us now consider several scenarios in a more structured way: First, a
sender Send sends a bit b and sets a timer, which we describe in the ECMSC

5 We will model timers by using separate processes because we are not interested in quantitative
timing requirements. Note that we could also use timers in the sense of [11].
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Sb shown in Figure 8.6 The sending might be followed by a timeout or by an
acknowledgement followed by a timeout, as shown respectively in the ECMSCs
TO1 and RAckb. Thus, we may combine the scenarios as shown in Figure 8 and
obtain the ECMSG H1. The receiver behaves dually. We identify the scenarios
Rb, SAckb, and TO2, which we combine towards H2.

We specify the ABP simply as the parallel product H1 ‖ H2 of the ECMSGs
H1 and H2 from Figure 8, where we define the parallel product of two ECMSGs
(States1,Π, δ1, s

1
in
, F1, χ) and (States2,Π, δ2, s

2
in
, F2, χ), as one might expect, to

be (States1 × States2,Π, δ, (s
1
in
, s2

in
), F1 × F2, χ). The set δ is hereby given as

{((s1, s2), h, (s
′
1, s2)) | (s1, h, s

′
1) ∈ δ1, s2 ∈ States2} ∪ {((s1, s2), h, (s1, s

′
2)) | s1 ∈

States1, (s2, h, s
′
2) ∈ δ2}.

A (partial) run of the product automaton is shown in Figure 7(b), whose
sequence of ECMSCs yields the ECMSC aside (Figure 7(a)). Thus, the ECMSC
of Figure 7(a) is a prefix of an ECMSC from M(H1 ‖ H2).

Anticipating the developments to come, let us mention that we now might
analyze our scenarios with respect to MSO formulas. For example, we might
ask whether we can derive scenarios in which we have unmatched receive events
(white holes) (∃y

∨
p,q,a(LRq

p(a)(y)∧¬∃x(x→ y))). If we are faced with a setting
that our channel will never produce white holes, we can simply analyze a formula
ϕ by model checking our protocol against the formula (∀y∃x((

∨
p,q,a LRq

p(a)(y)) ⇒
x→ y)) ⇒ ϕ, i.e., ruling out those ECMSCs that do not employ an unmatched
receive event.

4 ECMSCs and Regular Languages

In this section, we provide notions to handle ECMSCs by means of linearizations.
Our goal is to achieve a characterization as in [14], that is, the language of an
ECMSG can be represented by a regular word language. This characterization
will be the basis for the model checking procedure. The main idea of our approach
is to use linearizations which are indexed by natural numbers.

A word w = σ1 . . . σnu1 . . . un
∈ (Σ×(IN∪{⊥}))∗ is called ECMSC word. Its positions

can be considered to be events of an ECMSC, and together with its letters, we
can obtain the matching information (cf. Figures 4 and 5). More specifically, w
defines an ECMSC mw := (E,�, t, o, µ, `, λ) given as follows:

– E = {1, . . . , n}
– � is the reflexive and transitive closure of @ where i @ j iff i < j and

• o(σi) = o(σj) or
• (σi, σj) ∈ Corr and ui = uj 6= ⊥

– Smw = {i | σi ∈ ΣS and
∃j > i : (σi, σj) ∈ Corr and

ui = uj 6= ⊥ and (σk, uk) 6= (σi, ui) for i < k < j}

6 Note that we do not show the second timer process in scenarios for the sender and the first
timer process in scenarios involving the receiver for lack of space. Furthermore, note that Sb

represents two scenarios: S0 and S1.
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Timer1 Send Receive
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settimer

Sb :

Send Reply T imer2

b
1

Rb :

Timer1 Send Receive

timeout

TO1 :

Send Receive Timer2

ack b
1

settimer

SAckb :

Timer1 Send Receive

ack b
1

timeout

RAckb :

Send Receive Timer2

timeout

TO2 :

s0

s1 s2

s3

S0 TO1

RAck0

S1TO1

RAck1

t′0 t0

t1 t2

t3

SAck0 TO2

R1 · TO2

SAck1TO2

R0 · TO2R0

R0

R1H1: H2:

Fig. 8. The Alternating-Bit Protocol

Rmw = {i | σi ∈ ΣR and
∃j < i : (σj , σi) ∈ Corr and

ui = uj 6= ⊥ and (σk, uk) 6= (σi, ui) for j < k < i}

Umw = {i | σi ∈ ΣS , ui 6= ⊥, and @j > i : (σi, ui) = (σj , uj) or
[(σi, σj) ∈ Corr and ui = uj]}

∪ {i | σi ∈ ΣR, ui 6= ⊥, and @j < i : (σi, ui) = (σj, uj) or
[(σj , σi) ∈ Corr and ui = uj ]}

⊥mw = E \ (Smw ∪Rmw ∪ Umw )

– o(i) = o(σi)
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– µ(i) = min{j | i < j and (σi, σj) ∈ Corr and ui = uj}
– `(i) = σi

– λ(i) = ui (for i with t(i) = U)

The set of ECMSC words (recall that Σ is fixed) is denoted by W. We call
w = σ1 . . . σnu1 . . . un

∈ W a linearization of an ECMSC m iff mw = m. Let Lin(m)

denote the set of linearizations of m. Furthermore, we will make use of λ(w) :=
{ui | i ∈ Smw} describing the set of numbers used in w for matched events
(positions).

To give some examples, look at Figures 4 and 5. While w1 is a linearization
of m1, w

′
1 is not.7 In fact, any ECMSC is sufficiently described by a single lin-

earization. The word w2 is one of two possible linearizations of m2, and w4 is
a linearization of m4. Observe that mw1w2 = m1 ·m2 = m4. Generally, we can
state:

Proposition 1. Given a nonempty finite collection M = {m1, . . . ,mk} of ECM-
SCs and linearizations wi ∈ Lin(mi) with λ(wi) ∩ λ(M) = ∅, i ∈ {1, . . . , k}, we
have mw1...wk

≡ m1 · . . . ·mk.

An important result of [14] also holds in our setting, saying—informally—that
languages of ECMSGs can be represented by regular word languages. We call a
language L ⊆ W regular iff there is a B ∈ IN such that L ⊆ (Σ × ({1, . . . , B} ∪
{⊥}))∗ and L is regular in the usual sense.

Theorem 1. Let M be a set of ECMSCs.

1. If M is the language of an ECMSG, then there is a regular language L ⊆ W
with {mw | w ∈ L} ≡M .

2. If there is a regular language L ⊆ W with {mw | w ∈ L} = M , then M is
≡-equivalent to the language of an ECMSG.

Proof. 1. We first extend the usual notion of finite automata towards using words
instead of letters in the transition function, i.e., in the following, we deal with a
structure A = (States ,Π, δ, sin , F ) such that δ is a finite subset of States ×Π∗×
States . This is just for notational convenience and does not alter the expressive
power of finite automata.

For an ECMSG H = (States ,Π, δ, sin , F, χ), we can build an (extended) finite
automaton AH = (States ′, Σ× ({1, . . . , B} ∪ {⊥}), δ′, s′

in
, F ′) (with B a natural)

such that {mw | w ∈ L(AH)} = M(H) as follows: Initially, for each ECMSC
m ∈ Range(χ), we pick a linearization wm ∈ Lin(m) with λ(wm)∩λ(H) = ∅. (As
a general rule, for each ECMSC, one would determine a canonical linearization,
for example, in the sense of [5].) AH is then given as follows: B is the maximal
index used in a linearization. Furthermore, States ′ = States , s′

in
= sin , F ′ = F ,

and (q, w, q′) ∈ δ′ iff there is h ∈ Π such that both (q, h, q ′) ∈ δ and w = wχ(h).
The language equivalence (with respect to ≡) follows from Proposition 1.

7 replace 1 by ⊥ in m1
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2. We first assign to a symbol (σ, u) ∈ Σ × (IN ∪ {⊥}) the ECMSC m(σ,u) :=
(E,�,t, o, µ, `, λ) defined by E = {e}, �= {(e, e)}, t(e) = U if u ∈ IN, t(e) = ⊥
otherwise, o(e) = o(σ), µ = ∅, `(e) = σ, and, if t(e) = U, λ(e) = u. I.e., m(σ,u)

consists of exactly one unmatched event of type U or type ⊥. (Note that, in
fact, this definition is according to the ECMSC we obtain if (σ, u) is considered
as a word.) Given a (usual) finite automaton A = (States , Σ × ({1, . . . , B} ∪
{⊥}), δ, sin , F ) whose language is L, the ECMSG HL satisfying M(HL) ≡ {mw |
w ∈ L} is given by (States , Σ× ({1, . . . , B}∪{⊥}), δ, sin , F, χ) where χ((σ, u)) =
m(σ,u). �

5 Model Checking for ECMSGs

We have now set out the scene to consider model checking for ECMSGs.

5.1 MSO Model Checking

Following [14], we give a decision procedure for a monadic second-order logic in-
terpreted over ECMSCs, using the concept of a regular representative lineariza-
tion.

Given a supply Var = {x, y, . . .} of individual variables, which are going to
be interpreted over events of an ECMSC, and a supply VAR = {X,Y, . . .} of set
variables, which are interpreted over sets of events, the syntax of MSO(P,Mess)
is defined by the following grammar:

ϕ ::= Lσ(x) | x→ y | x ∈ X | x � y | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

where σ ∈ Σ, x, y ∈ Var, and X ∈ VAR. Moreover, we allow the usual ab-
breviations. The intuitive meaning of x → y is that x is send event and y its
corresponding receive event. x � y holds iff y follows x in the order of the ECMSC
at hand. The remaining constructs are as usual. We formalize the intuitive study:
Let m = (E,�, t, o, µ, `, λ) be an ECMSC. Given an interpretation function I,
which assigns to an individual variable x an event I(x) ∈ E and to a set variable
X a set of events I(X) ⊆ E, the satisfaction relation m |=I ϕ for a formula
ϕ ∈ MSO(P,Mess) is inductively defined as follows:

– m |=I Lσ(x) iff `(I(x)) = σ

– m |=I x→ y iff I(x) ∈ Sm, I(y) ∈ Rm, and µ(I(x)) = I(y)
– m |=I x ∈ X iff I(x) ∈ I(X)
– m |=I x � y iff I(x) � I(y)
– m |=I ¬ϕ iff m 6|=I ϕ

– m |=I ϕ ∨ ψ iff m |=I ϕ or m |=I ψ
– m |=I ∃xϕ iff ∃e ∈ E : m |=I[x/e] ϕ

– m |=I ∃Xϕ iff ∃E′ ⊆ E : m |=I[X/E′] ϕ

We only consider formulas without free variables in the following and accord-
ingly write m |= ϕ instead of m |=I ϕ. For ϕ ∈ MSO(P,Mess), let Mϕ := {m |
m |= ϕ}. Note that Mϕ is closed with respect to ≡, i.e., for any ECMSCs m and
m′ with m ≡ m′, it holds m |= ϕ iff m′ |= ϕ.
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Theorem 2. Given ϕ ∈ MSO(P,Mess) and an ECMSG H, we can decide
whether M(H) ⊆Mϕ.

Proof. Let AH be the automaton of H from the first part of the proof of Theorem
1 with L(AH) ⊆ (Σ× ({1, . . . , B}∪{⊥}))∗ =: WB. From ϕ, we inductively build
an MSO formula ||ϕ|| interpreted over elements of WB such that {w ∈ WB | w |=
||ϕ||} = {w ∈ WB | mw |= ϕ} =: LB

ϕ . The fact that M(H) ⊆Mϕ iff L(AH) ⊆ LB
ϕ

then leads to a decision procedure in the obvious manner.
Let us determine ||ϕ|| inductively as follows: For Lσ(x), we have to guess

the right number, thus, we define ||Lσ(x)|| :=
∨

u∈{1,...,B,⊥} L(σ,u)(x). Element
relation, negation, disjunction and existential quantification carry through, i.e.,
||x ∈ X || := x ∈ X, ||¬ψ|| := ¬||ψ||, ||ψ1 ∨ ψ2|| := ||ψ1|| ∨ ||ψ2||, ||∃xψ|| := ∃x||ψ||, and
||∃Xψ|| := ∃X||ψ||. x and y are corresponding send and receive events if y follows
x, their labelings are correlated, and there is no correlated element inbetween.
So we define ||x→ y|| :=↘(x, y) where the matching predicate is given by

↘(x, y) :=
∨

(σ,τ)∈Corr

u∈{1,...,B}

[x<y ∧L(σ,u)(x)∧L(τ,u)(y)∧ @z(x<z<y ∧ (L(σ,u)(z)∨L(τ,u)(z)))]

Finally, y follows x causally if there is a corresponding sequence of matching send
and receive events or events on the same process line. Thus,

||x � y|| := ∃X[x ∈ X ∧ y ∈ X∧
∀z(z ∈ X ∧ z 6= y ⇒ ∃z′(z′ ∈ X ∧ z<z′∧

Proc(z) = Proc(z′)∨ ↘(z, z′)))]

and Proc(x) is defined as expected. �

5.2 Temporal Logics for ECMSCs

While MSO is a powerful and useful specification logic on its own, the result
of the previous subsection provides simple decidability results for further (tem-
poral) logics by encoding. For example, TLC [18] can easily be encoded into
MSO(P,Mess) and model checking can be shown to be decidable in this way.
However, this approach does not seem to be reasonable for practical issues, due
to the non-elementary complexity of model checking MSO formulas. In the do-
main of Mazurkiewicz traces [6], several temporal logics have been studied and
sophisticated model-checking procedures were developed.

These logics usually define trace-closed languages. Therefore, as pointed out
by Madhusudan and Meenakshi [14], it is desirable to find the existence of tem-
poral logics interpreted over ECMSC words that are trace-closed in some sense,
i.e., whose formulas are satisfied by either all linearizations of an ECMSC or
none of them. First attempts in this regard were done in [15] and [4].

We will now establish a strong connection between ECMSCs and the theory
of Mazurkiewicz traces, which subsequently yields trace-closed logics as well as
corresponding decision procedures in a natural manner. With respect to Σ, the
dependence relation D(Σ) ⊆ (Σ × (IN ∪ {⊥}))2 is given by (σ, u)D(Σ)(σ′, u′) iff
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– o(σ) = o(σ′) or

– (σ, σ′) ∈ Corr and u = u′ 6= ⊥ or

– (σ′, σ) ∈ Corr and u = u′ 6= ⊥.

For each naturalB, the pair Σ̃ := (Σ×{1, . . . , B,⊥}, D(Σ)∩(Σ×{1, . . . , B,⊥})2)
turns out to be a Mazurkiewicz trace alphabet [6]. Kuske and Morin investigate
relations like this in detail [12, 17].

A relation ∼Σ̃⊆ WB ×WB provides information about which ECMSC words
are seen to be equivalent with respect to D(Σ). So let ∼Σ̃ be the least equiv-
alence relation satisfying the following: If w = w1(σ, u)(σ

′, u′)w2 and w′ =
w1(σ

′, u′)(σ, u)w2 for suitable w1, w2 and not (σ, u)D(Σ)(σ′, u′), then w ∼Σ̃ w′.
Thus, within an equivalence class of ∼Σ̃, we are allowed to permute two neigh-
bored positions in an ECMSC word that are labeled with independent actions
(actions which are not dependent).

The above connection between ECMSCs and Mazurkiewicz traces is useful
due to the following fact: For each ECMSC m, Lin(m) ∩WB is the finite union
of equivalence classes of ∼Σ̃ ∩(WB ×WB). It is then effortlessly possible to suit
temporal logics for Mazurkiewicz traces like TrPTL [19] or LTrL [20] to ECMSCs
and to employ corresponding decision procedures, for example in the style of [3].

6 Conclusion

In this paper, we presented a formal definition of extended compositional message
sequence charts (ECMSCs) with black and white holes, which supports methods
of formal analysis. Furthermore, we allow message overtaking as defined in the
MSC standard. The ECMSCs can be combined by means of choice and repetition
towards (extended) compositional message sequence graphs (ECMSGs). Giving
scenarios and ECMSGs for the Alternating-Bit Protocol, we validated that our
formalism is useful for practical applications.

Despite its extended expressive power, we have shown that model checking
monadic second-order formulas is decidable. Similar as in [14], our decision proce-
dure uses the idea to represent the language of an ECMSG by a regular language.
To obtain the result that languages of ECMSGs indeed can be represented by
regular word languages, we introduce indexed linearizations.

These indexed linearizations give furthermore a link between MSCs and
Mazurkiewicz traces in a natural way, as requested by [14]. This link is the
cornerstone for easily carrying over the sophisticated work on temporal logics for
Mazurkiewicz traces to the domain of MSCs.
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