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ADT Set - Algebraic Specification

• Collection of elements of a certain type

• Operations:
·.insert (·) : set × element → set

·.remove (·) : set × element → set

. . .

• Predicates:
. ∈ . : element × set

. ⊆ . : set × set

. = . : set × set
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ADT Set Axioms (selection)

a ∈ s.insert (b) ↔ a =el b ∨ a ∈ s, (1)

a ∈ s.remove (b) ↔ a 6=el b ∧ a ∈ s, (2) ←↩

s ⊆ s′ ↔ (∀a.a ∈ s → a ∈ s′), (3)

s = s′ ↔ (s ⊆ s′ ∧ s′ ⊆ s), (4)

. . .
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Structure Declarations
typedef struct Tree

{

void * data;

struct Tree * left;

struct Tree * right;

} List;

typedef struct Set

{

List * tree;

int ( * compare)(void * , void * );

int size;

} Set;

tree

left

leftright

right

set
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Data Structure Invariants

• The tree is in fact a tree ;-)
i.e. every node is reachable from set and pointed
to from exactly one other node

• The tree is ordered:
left descendants are smaller, right descendants
larger

⇒ both are formalized by instrumentation
predicates
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Removing an Element
setRemove

L0

Lentry1

storeReach(set)

Lentry4

Lentry5

tree = (T)set->left

Lfb5

Lfb6

subtree->right = (T) NULL

Lfb13

Lfb15

temp != tree

Lfb14

temp == tree

Lfb8

Lfb9

subtree->right = (T)treeRight

LfRin2

LfRin3

previous2 =(T) NULL

LfLeft

LfAfter

following = (T)treeRight

exit4

exit5

temp =(T) NULL

LfR1

Lfree1

treeRight == null

LfR2

treeRight != null

LfAfterAll

LfAfterAlla

temp =(T) NULL

Lwhile

Lbody

tree != null

exit

tree == null

Lfree2

tree->left = (T) NULL

Lf5

treeLeft == null

treeLeft != null

Lw2body

Lw22

previous2 = (T)subtree

Lwhile2

temp != null

Lfbodyend

temp == null

Lfb2

Lfb4

previous2 == null

Lfb3

previous2 != null

Lfound

tree->data == element->data

Lnotfound

tree->data != element->data

temp =(T) NULL

Lf2

treeRight != null

Lf3

treeRight == null

exit1

exit2

previous =(T) NULL

Lfb11

set->left = (T)subtree

Lfb3a

Lfb3b

previous2->right = (T) NULL

tree->right = (T) NULL

Lfbt

temp =(T) NULL

error

Lfb15a

previous->right = (T) NULL

Lf1

treeRight = (T)tree->right

treeLeft = (T)tree->left

Lfb12

temp = (T)previous->left

treeLeft != subtree Lfb7

treeLeft != subtree

LfAfter2

LfAfter2b

set->left = (T) NULL

Lentry6

previous =(T) NULL

LfAfter5

LfAfter6

previous->left = (T) NULL

Lfb14a

previous->left = (T)subtree

previous != null

Lfb10

previous == null

exitr

tree =(T) NULL

set->left = (T) NULL

previous == null

LfAfter3

previous != null

exit3

previous2 =(T) NULL

exit6

Is element an element of set set? Is Data in tree tree NOT in ascending order? AssertPermutation(set, element)

Lnf4

tree = (T)tree->right

previous->left = (T)following

Lnf3

tree = (T)tree->left

previous->left = (T) NULL

LfRight

following = (T)treeLeft

LfAfter4

temp = (T)previous->left

Lnf2

tree->data < element->data tree->data > element->data

subtree =(T) NULL

LfNull

following =(T) NULL

LfAfter8

previous->right = (T)following

Lentry7

previous2 =(T) NULL

Lentry8

subtree =(T) NULL

following =(T) NULL

LfRin

subtree = (T)treeLeft

temp = (T)subtree->right

Lw23

subtree = (T)temp

previous->right = (T)subtree

treeLeft != nulltreeLeft == null

Lfree3

free(tree) 

previous = (T)tree

exit0

treeLeft =(T) NULL

Lentry3

following =(T) NULL

Lfb3c

temp =(T) NULL

LfAfter7

previous->right = (T) NULL

treeLeft == null

treeLeft != null

subtree->left = (T) NULL

set->left = (T)following

temp = (T)subtree->left

treeRight =(T) NULL

subtree->left = (T)treeLeft

previous2->right = (T)temp

temp =(T) NULL

Lentry2

treeLeft =(T) NULL

temp == tree temp != tree

temp = (T)subtree->right

treeRight =(T) NULL

following =(T) NULL

E E E

N

N
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Proving Compliance to ADT Axioms
Problem 1

• Problem 1: Axioms relate different routines of the set
implementation: ∈ and remove

a ∈ s .remove (b) ↔ a 6=el b ∧ a ∈ s

• Solution:

• Represent ∈ predicate by isElement instrumentation
predicate

• Prove the equivalence of ∈-implementation and
isElement

• Prove compliance of remove -implementation to axiom
in terms of isElement
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Proving Compliance to ADT Axioms
Problem 2

• Problem 2: Axioms relate state of predicates
before and after execution:
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s

• Solution: Remember old element relation
isElementOld

• Predicate is fixed before invocation of method

• Allows to compare new and old values of
element property

• Primed vs. Unprimed versions
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So what do our analyses really prove?

Axiom: a ∈ s.remove (b) ↔ a 6=el b ∧ a ∈ s

1. isElement(a, s) ⇔ a ∈ s

2. After executing s.remove (b) we check
isElement(a, s) ↔ a 6=el b ∧ isElementOld(a, s)
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Recent Developments in Shape Analysis

• very precise Shape Analysis algorithms
−→ able to prove partial correctness of
programs: bubble-sort, insertion-sort, etc.
[LARSW00]

• instantiations of a Parametric Shape Analysis
Framework of [SRW02] that use logical structures
to represent states

• has been implemented in a tool called TVLA (=
Three-Valued-Logic Analyzer)
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Canonical Abstraction
• Collapse individuals that agree on unary predicates.

r[x]
r[x]
r[t]

n

x

r[x]n
r[x]
r[t]

r[x]
r[t]

n n

n

r[x]

x

r[x]n

n

t

r[x]n

r[x]
r[t]

t

n
r[x]
r[t]

n

n

{x, r[x]},{t, r[t]} {r[x]},{x, t, r[t]} {t, r[t], r[x]},{x} {r[t], r[x]},{x, t}

n

• At most 3|U | abstract individuals.
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How to make analyses precise
Key Predicates

• Model data-field indirectly
dle-predicate - “data less or equal”
stores value of compare-function

• Capture dle-relation with nodes pointed to by
variables: dle[variable, left]- and
dle[variable, right]-predicate family

• Keep precise reachability information through:
downStar[left], downStar[right]
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Predicates - dle[var,left] / dle[var, right]
dle[x, left](v) = ∃v1.(x(v1) ∧ dle(v, v1) ∧ ¬dle(v1, v))
dle[x, right](v) = ∃v1.(x(v1) ∧ ¬dle(v, v1) ∧ dle(v1, v))

dle[x, left]=½
dle[x, right]=½
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Predicates - dle[var,left] / dle[var, right]
dle[x, left](v) = ∃v1.(x(v1) ∧ dle(v, v1) ∧ ¬dle(v1, v))
dle[x, right](v) = ∃v1.(x(v1) ∧ ¬dle(v, v1) ∧ dle(v1, v))

dle[x, right]dle[x, left]
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Predicates - downStar[left] / downStar[right]
down(v1, v2) = left(v1, v2) ∨ right(v1, v2)
downStar[left](v1, v2) = ∃v.left(v1, v) ∧ down∗(v, v2)
downStar[right](v1, v2) = ∃v.right(v1, v) ∧ down∗(v, v2)

left right

downStar[left] downStar[right]
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Data Structure Invariants - Is it a tree?

left right

?

downStar[left] downStar[right]
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Data Structure Invariants - Is it ordered?

left right

?<
downStar[left] downStar[right]
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Combined Effect of Predicates

N

E N

remove E
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Summary

• Successfully analyzed complex heap-manipulating
routines!

• From Axiom to Analysis:

• Coupled different analyses by instrumentation
predicates (isElement(a, s) ↔ a ∈ s)

• Remembered old state of predicate to compare it with
new state (isElementOld)

• Tailoring the abstraction specifically to the data structure
was the key: Keeping important ordering and reachability
information precise
−→ one abstraction for all methods, no loop invariants
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The Abstract Data Type Set X
A Tree-based Set Implementation X
Shape Analysis of the Implementation X

Thanks for your attention!
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