
Workshop “Trustworthy Software” 2006

Shape Analysis of Sets
Jan Reineke

Compiler Design Lab, Saarland University
reineke@cs.uni-sb.de

Shape Analysis of Sets, May 18, 2006

The Big Picture

ADT SetTree Impl.

AxiomsInvariants

implements?

Shape
Analysis

proves

Shape Analysis of Sets, May 18, 2006

ADT Set

ADT SetTree Impl.

AxiomsInvariants

implements?

Shape
Analysis

proves

Shape Analysis of Sets, May 18, 2006

ADT Set - Algebraic Specification

• Collection of elements of a certain type

• Operations:
·.insert (·) : set × element → set

·.remove (·) : set × element → set

. . .

• Predicates:
. ∈ . : element × set

. ⊆ . : set × set

. = . : set × set

Shape Analysis of Sets, May 18, 2006

ADT Set Axioms (selection)

a ∈ s.insert (b) ↔ a =el b ∨ a ∈ s, (1)

a ∈ s.remove (b) ↔ a 6=el b ∧ a ∈ s, (2) ←↩

s ⊆ s′ ↔ (∀a.a ∈ s → a ∈ s′), (3)

s = s′ ↔ (s ⊆ s′ ∧ s′ ⊆ s), (4)

. . .

Shape Analysis of Sets, May 18, 2006

Tree-based Implementation

ADT SetTree Impl.

AxiomsInvariants

implements?

Shape
Analysis

proves

Shape Analysis of Sets, May 18, 2006

Structure Declarations
typedef struct Tree

{

void * data;

struct Tree * left;

struct Tree * right;

} List;

typedef struct Set

{

List * tree;

int (* compare)(void * , void *);

int size;

} Set;

tree

left

leftright

right

set

Shape Analysis of Sets, May 18, 2006

Data Structure Invariants

• The tree is in fact a tree ;-)
i.e. every node is reachable from set and pointed
to from exactly one other node

• The tree is ordered:
left descendants are smaller, right descendants
larger

⇒ both are formalized by instrumentation
predicates

Shape Analysis of Sets, May 18, 2006

Removing an Element
setRemove

L0

Lentry1

storeReach(set)

Lentry4

Lentry5

tree = (T)set->left

Lfb5

Lfb6

subtree->right = (T) NULL

Lfb13

Lfb15

temp != tree

Lfb14

temp == tree

Lfb8

Lfb9

subtree->right = (T)treeRight

LfRin2

LfRin3

previous2 =(T) NULL

LfLeft

LfAfter

following = (T)treeRight

exit4

exit5

temp =(T) NULL

LfR1

Lfree1

treeRight == null

LfR2

treeRight != null

LfAfterAll

LfAfterAlla

temp =(T) NULL

Lwhile

Lbody

tree != null

exit

tree == null

Lfree2

tree->left = (T) NULL

Lf5

treeLeft == null

treeLeft != null

Lw2body

Lw22

previous2 = (T)subtree

Lwhile2

temp != null

Lfbodyend

temp == null

Lfb2

Lfb4

previous2 == null

Lfb3

previous2 != null

Lfound

tree->data == element->data

Lnotfound

tree->data != element->data

temp =(T) NULL

Lf2

treeRight != null

Lf3

treeRight == null

exit1

exit2

previous =(T) NULL

Lfb11

set->left = (T)subtree

Lfb3a

Lfb3b

previous2->right = (T) NULL

tree->right = (T) NULL

Lfbt

temp =(T) NULL

error

Lfb15a

previous->right = (T) NULL

Lf1

treeRight = (T)tree->right

treeLeft = (T)tree->left

Lfb12

temp = (T)previous->left

treeLeft != subtree Lfb7

treeLeft != subtree

LfAfter2

LfAfter2b

set->left = (T) NULL

Lentry6

previous =(T) NULL

LfAfter5

LfAfter6

previous->left = (T) NULL

Lfb14a

previous->left = (T)subtree

previous != null

Lfb10

previous == null

exitr

tree =(T) NULL

set->left = (T) NULL

previous == null

LfAfter3

previous != null

exit3

previous2 =(T) NULL

exit6

Is element an element of set set? Is Data in tree tree NOT in ascending order? AssertPermutation(set, element)

Lnf4

tree = (T)tree->right

previous->left = (T)following

Lnf3

tree = (T)tree->left

previous->left = (T) NULL

LfRight

following = (T)treeLeft

LfAfter4

temp = (T)previous->left

Lnf2

tree->data < element->data tree->data > element->data

subtree =(T) NULL

LfNull

following =(T) NULL

LfAfter8

previous->right = (T)following

Lentry7

previous2 =(T) NULL

Lentry8

subtree =(T) NULL

following =(T) NULL

LfRin

subtree = (T)treeLeft

temp = (T)subtree->right

Lw23

subtree = (T)temp

previous->right = (T)subtree

treeLeft != nulltreeLeft == null

Lfree3

free(tree)

previous = (T)tree

exit0

treeLeft =(T) NULL

Lentry3

following =(T) NULL

Lfb3c

temp =(T) NULL

LfAfter7

previous->right = (T) NULL

treeLeft == null

treeLeft != null

subtree->left = (T) NULL

set->left = (T)following

temp = (T)subtree->left

treeRight =(T) NULL

subtree->left = (T)treeLeft

previous2->right = (T)temp

temp =(T) NULL

Lentry2

treeLeft =(T) NULL

temp == tree temp != tree

temp = (T)subtree->right

treeRight =(T) NULL

following =(T) NULL

E E E

N

N

Shape Analysis of Sets, May 18, 2006

Shape Analysis

ADT SetTree Impl.

AxiomsInvariants

implements?

Shape
Analysis

proves

Shape Analysis of Sets, May 18, 2006

Proving Compliance to ADT Axioms
Problem 1

• Problem 1: Axioms relate different routines of the set
implementation: ∈ and remove

a ∈ s .remove (b) ↔ a 6=el b ∧ a ∈ s

• Solution:

• Represent ∈ predicate by isElement instrumentation
predicate

• Prove the equivalence of ∈-implementation and
isElement

• Prove compliance of remove -implementation to axiom
in terms of isElement

Shape Analysis of Sets, May 18, 2006

Proving Compliance to ADT Axioms
Problem 2

• Problem 2: Axioms relate state of predicates
before and after execution:
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s

• Solution: Remember old element relation
isElementOld

• Predicate is fixed before invocation of method

• Allows to compare new and old values of
element property

• Primed vs. Unprimed versions

Shape Analysis of Sets, May 18, 2006

So what do our analyses really prove?

Axiom: a ∈ s.remove (b) ↔ a 6=el b ∧ a ∈ s

1. isElement(a, s) ⇔ a ∈ s

2. After executing s.remove (b) we check
isElement(a, s) ↔ a 6=el b ∧ isElementOld(a, s)

Shape Analysis of Sets, May 18, 2006

Recent Developments in Shape Analysis

• very precise Shape Analysis algorithms
−→ able to prove partial correctness of
programs: bubble-sort, insertion-sort, etc.
[LARSW00]

• instantiations of a Parametric Shape Analysis
Framework of [SRW02] that use logical structures
to represent states

• has been implemented in a tool called TVLA (=
Three-Valued-Logic Analyzer)

Shape Analysis of Sets, May 18, 2006

Canonical Abstraction
• Collapse individuals that agree on unary predicates.

r[x]
r[x]
r[t]

n

x

r[x]n
r[x]
r[t]

r[x]
r[t]

n n

n

r[x]

x

r[x]n

n

t

r[x]n

r[x]
r[t]

t

n
r[x]
r[t]

n

n

{x, r[x]},{t, r[t]} {r[x]},{x, t, r[t]} {t, r[t], r[x]},{x} {r[t], r[x]},{x, t}

n

• At most 3|U | abstract individuals.

Shape Analysis of Sets, May 18, 2006

How to make analyses precise
Key Predicates

• Model data-field indirectly
dle-predicate - “data less or equal”
stores value of compare-function

• Capture dle-relation with nodes pointed to by
variables: dle[variable, left]- and
dle[variable, right]-predicate family

• Keep precise reachability information through:
downStar[left], downStar[right]

Shape Analysis of Sets, May 18, 2006

Predicates - dle[var,left] / dle[var, right]
dle[x, left](v) = ∃v1.(x(v1) ∧ dle(v, v1) ∧ ¬dle(v1, v))
dle[x, right](v) = ∃v1.(x(v1) ∧ ¬dle(v, v1) ∧ dle(v1, v))

dle[x, left]=½
dle[x, right]=½

Shape Analysis of Sets, May 18, 2006

Predicates - dle[var,left] / dle[var, right]
dle[x, left](v) = ∃v1.(x(v1) ∧ dle(v, v1) ∧ ¬dle(v1, v))
dle[x, right](v) = ∃v1.(x(v1) ∧ ¬dle(v, v1) ∧ dle(v1, v))

dle[x, left]=½
dle[x, right]=½

dle[x, left] dle[x, right]

Shape Analysis of Sets, May 18, 2006

Predicates - dle[var,left] / dle[var, right]
dle[x, left](v) = ∃v1.(x(v1) ∧ dle(v, v1) ∧ ¬dle(v1, v))
dle[x, right](v) = ∃v1.(x(v1) ∧ ¬dle(v, v1) ∧ dle(v1, v))

dle[x, right]dle[x, left]

Shape Analysis of Sets, May 18, 2006

Predicates - downStar[left] / downStar[right]
down(v1, v2) = left(v1, v2) ∨ right(v1, v2)
downStar[left](v1, v2) = ∃v.left(v1, v) ∧ down∗(v, v2)
downStar[right](v1, v2) = ∃v.right(v1, v) ∧ down∗(v, v2)

left right

downStar[left] downStar[right]

Shape Analysis of Sets, May 18, 2006

Data Structure Invariants - Is it a tree?

left right

?

downStar[left] downStar[right]

Shape Analysis of Sets, May 18, 2006

Data Structure Invariants - Is it ordered?

left right

?<
downStar[left] downStar[right]

Shape Analysis of Sets, May 18, 2006

Combined Effect of Predicates

N

E N

remove E

Shape Analysis of Sets, May 18, 2006

Summary

• Successfully analyzed complex heap-manipulating
routines!

• From Axiom to Analysis:

• Coupled different analyses by instrumentation
predicates (isElement(a, s) ↔ a ∈ s)

• Remembered old state of predicate to compare it with
new state (isElementOld)

• Tailoring the abstraction specifically to the data structure
was the key: Keeping important ordering and reachability
information precise
−→ one abstraction for all methods, no loop invariants

Shape Analysis of Sets, May 18, 2006

The Abstract Data Type Set X
A Tree-based Set Implementation X
Shape Analysis of the Implementation X

Thanks for your attention!

Shape Analysis of Sets, May 18, 2006

References

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic
Specification I. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1985.

[LARSW00] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wil-
helm. Putting static analysis to work for verification: A case
study. In ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis,
pages 26–38, New York, NY, USA, 2000. ACM Press.

[LEW97] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf.
Specification of abstract data types. John Wiley & Sons,
Inc., New York, NY, USA, 1997.

[Rei05] Jan Reineke. Shape Analysis of Sets. Master’s thesis, Saar-
land University, Saarbrücken, Germany, June 2005.

Shape Analysis of Sets, May 18, 2006

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Para-
metric shape analysis via 3–valued logic. ACM Trans. Pro-
gram. Lang. Syst., 24(3):217–298, 2002.

Shape Analysis of Sets, May 18, 2006

