Workshop "Trustworthy Software" 2006

Shape Analysis of Sets

Jan Reineke
Compiler Design Lab, Saarland University

reineke@cs.uni-sb.de

The Big Picłure

ADT Set

ADT Set - Algebraic Specification

- Collection of elements of a certain type
- Operations:

$$
\begin{aligned}
& \ddots \text { insert }(\cdot): \text { set } \times \text { element } \rightarrow \text { set } \\
& \cdot \cdot \text { remove }(\cdot): \text { set } \times \text { element } \rightarrow \text { set }
\end{aligned}
$$

- Predicates:
. \in. : element \times se \dagger
. \subseteq. : set \times se \dagger
. $=$. : set \times se \dagger

ADT Set Axioms (selection)

$$
\begin{align*}
& a \in s . \text { insert }(b) \leftrightarrow a=_{e l} b \vee a \in s, \quad \text { (1) } \\
& a \in s . \text { remove }(b) \leftrightarrow a \neq e l \\
& b \wedge a \in s, ~(2) ~ \tag{3}\\
& s \subseteq s^{\prime} \leftrightarrow\left(\forall a . a \in s \rightarrow a \in s^{\prime}\right), \tag{4}\\
& s=s^{\prime} \leftrightarrow\left(s \subseteq s^{\prime} \wedge s^{\prime} \subseteq s\right),
\end{align*}
$$

Tree-based Implementation

Structure Declarations

```
typedef struct Tree typedef struct Set
{
    void* data;
    struct Tree* left;
    struct Tree* right;
} List;
{
    List* tree;
    int (*compare) (void*, void*);
    int size;
} Set;
```


Data Structure Invariants

- The tree is in fact a tree ;-)
i.e. every node is reachable from set and pointed to from exactly one other node
- The tree is ordered: left descendants are smaller, right descendants larger
\Rightarrow both are formalized by instrumentation
predicates

Removing an Element

Shape Analysis of Sets, May 18, 2006

Shape Analysis

Proving Compliance to ADT Axioms Problem 1

- Problem 1: Axioms relate different routines of the set implementation: \in and remove
$a \in s$.remove $(b) \leftrightarrow a \neq{ }_{e l} b \wedge a \in s$
- Solution:
- Represent \in predicate by isElement instrumentation predicate
- Prove the equivalence of e-implementation and isElement
- Prove compliance of remove-implementation to axiom in terms of isElement

Proving Compliance to ADT Axioms Problem 2

- Problem 2: Axioms relate state of predicates before and after execution: $a \in s$.remove $(b) \leftrightarrow a \neq e l b \wedge a \in s$
- Solution: Remember old element relation isElementOld
- Predicate is fixed before invocation of method
- Allows to compare new and old values of element property
- Primed vs. Unprimed versions

So what do our analyses really prove?

Axiom: $a \in s$.remove $(b) \leftrightarrow a \neq e l b \wedge a \in s$

1. isElement $(a, s) \Leftrightarrow a \in s$
2. After executing $s . \operatorname{remove}(b)$ we check isElement $(a, s) \leftrightarrow a \neq e l b \wedge$ isElementOld (a, s)

Recent Developments in Shape Analysis

- very precise Shape Analysis algorithms \longrightarrow able to prove partial correctness of programs: bubble-sort, insertion-sort, etc. (LARSWOO)
- instantiations of a Parametric Shape Analysis Framework of (SRWO2) that use logical structures to represent states
- has been implemented in a tool called TVLA (= Three-Valued-Logic Analyzer)

Canonical Abstraction

- Collapse individuals that agree on unary predicates.

- At most $3^{|U|}$ abstract individuals.

How to make analyses precise
 Key Predicates

- Model data-field indirectly dle-predicate - "data less or equal" stores value of compare-function
- Capture dle-relation with nodes pointed to by variables: dle[variable, left]- and dle[variable, right]-predicate family
- Keep precise reachability information through: downStar[left], downStar[right]

Predicates - dle(var,left) / dle(var, right)

$$
\begin{aligned}
& d l e[x, l e f t](v)=\exists v_{1} \cdot(x(v 1) \wedge d l e(v, v 1) \wedge \neg \operatorname{dle}(v 1, v)) \\
& d l e[x, \operatorname{right}](v)=\exists v_{1} \cdot(x(v 1) \wedge \neg d l e(v, v 1) \wedge \operatorname{dle}(v 1, v))
\end{aligned}
$$

Predicates - dle(var,left) / dle(var, right)

$$
\begin{aligned}
& d l e[x, l e f t](v)=\exists v_{1} \cdot(x(v 1) \wedge d l e(v, v 1) \wedge \neg d l e(v 1, v)) \\
& d l e[x, \operatorname{right}](v)=\exists v_{1} \cdot(x(v 1) \wedge \neg d l e(v, v 1) \wedge d l e(v 1, v))
\end{aligned}
$$

Predicates - dle(var,left) / dle(var, right)

$$
\begin{aligned}
& d l e[x, l e f t](v)=\exists v_{1} \cdot(x(v 1) \wedge d l e(v, v 1) \wedge \neg \operatorname{dle}(v 1, v)) \\
& d l e[x, \operatorname{right}](v)=\exists v_{1} \cdot(x(v 1) \wedge \neg d l e(v, v 1) \wedge \operatorname{dle}(v 1, v))
\end{aligned}
$$

Predicates - downStar(left) / downStar(right)

```
down}(\mp@subsup{v}{1}{},\mp@subsup{v}{2}{})=left(\mp@subsup{v}{1}{},\mp@subsup{v}{2}{})\vee\operatorname{right}(\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}
downStar[left](v, v},\mp@subsup{v}{2}{})=\existsv.left (v,v)\wedge down* (v,\mp@subsup{v}{2}{}
downStar[right](v, v, v})=\existsv.right (v,v)^down* (v,\mp@subsup{v}{2}{}
```


Data Structure Invariants - Is it a tree?

Shape Analysis of Sets, May 18, 2006

Data Structure Invariants - Is it ordered?

Combined Effect of Predicates

Shape Analysis of Sets, May 18, 2006

Summary

- Successfully analyzed complex heap-manipulating routines!
- From Axiom to Analysis:
- Coupled different analyses by instrumentation predicates (isElement $(a, s) \leftrightarrow a \in s$)
- Remembered old state of predicate to compare it with new state (isElementOld)
- Tailoring the abstraction specifically to the data structure was the key: Keeping important ordering and reachability information precise
\longrightarrow one abstraction for all methods, no loop invariants

The Abstract Data Type Set \checkmark A Tree-based Set Implementation \checkmark Shape Analysis of the Implementation \checkmark

Thanks for your attention!

References

(EM85) Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification I. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1985.
(LARSWOO) Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting static analysis to work for verification: A case study. In ISSTA '00: Proceedings of the 2000 ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 26-38, New York, NY, USA, 2000. ACM Press.
(LEW97) Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of abstract data types. John Wiley \& Sons, Inc., New York, NY, USA, 1997.
(Rei05) Jan Reineke. Shape Analysis of Sets. Master's thesis, Saarland University, Saarbrücken, Germany, June 2005.
(SRWO2) Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3 -valued logic. ACM Trans. Program. Lang. Syst., 24(3):217-298, 2002.

