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Motivation

Caches used in hard real-time systems
Need to derive upper and lower bounds on WCET and BCET

−→ Need cache analysis

count

timeBCET ACET WCET upper
bound

uncertainty
×

penalty

In literature: almost exclusively LRU
In practice: LRU, FIFO, PLRU, Pseudo Round-Robin, . . .
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Approach

1 Determine competitiveness of the policy P relative to policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

2 Compute performance of task T for policy Q by cache analysis.

mP ≤ k ·mQ + c mQ(T) = mP(T)

3 Calculate upper bounds on the number of misses for P using the
cache analysis results for Q and the competitiveness results of P
relative to Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)
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Cache Analysis

Two types of cache analysis:
1 Global guarantees: bounds on cache hits/misses

[GMM98, CPHL01]
2 Local guarantees: classification of individual accesses

[FMW97, FW99, WHW+97, RM05]

−→ Can provide both!
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Relative Competitiveness

Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal
offline policy (MIN, OPT, BEL)

I used to evaluate online policies, many extensions

Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another
online policy
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Examples – Relative Miss-Competitiveness

P is 3-miss-competitive relative to Q with additive constant 4.
If Q incurs 7 misses, then P can incur at most 3 · 7 + 4 = 25 misses.

P is 1
2 -miss-competitive relative to Q.

=⇒ mP ≤ 1
2 ·mQ on all access sequences. 

Best: P is 1-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or∞-miss-competitive) relative to Q.
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Definition – Relative Miss-Competitiveness

Notation
mP(p, s) = number of misses that policy P incurs on

access sequence s ∈ M∗ starting in state p ∈ CP

Definition (Relative miss competitiveness)
Policy P is k -miss-competitive relative to policy Q with additive
constant c, if

mP(p, s) ≤ k ·mQ(q, s) + c

for all access sequences s ∈ M∗ and compatible cache-set states
p ∈ CP , q ∈ CQ.

Definition (Competitive miss ratio of P relative to Q)
The smallest k , such that P is k -miss-competitive relative to Q.
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Examples – Relative Hit-Competitiveness

P is 2
3 -hit-competitive relative to Q with subtractive constant 3.

If Q has 27 hits, then P has at least 2
3 · 27− 3 = 15 hits.

P is 2-hit-competitive relative to Q.

=⇒ hP ≥ 2 · hQ on all access sequences. 
Best: P is 1-hit-competitive relative to Q.

Equivalent to 1-miss-competitiveness.

Worst: P is 0-hit-competitive relative to Q.
Analogue to∞-miss-competitiveness.
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1-Competitiveness

Let P be 1-(miss-)competitive relative to Q with constant 0:

mP(p, s) ≤ 1 ·mQ(q, s) + 0

⇔ mP(p, s) ≤ mQ(q, s)

1 If Q “hits” so does P, and
2 if P “misses” so does Q.

As a consequence,
1 a must-analysis for Q is also a sound must-analysis for P, and
2 a may-analysis for P is also a sound may-analysis for Q.
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Relative Competitiveness – Automatic Computation

P and Q induce transition system (running example):

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd ]FIFO, [abcd ]LRU
e

(m, m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd ]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m, m)

c

(h, m)
[deab]FIFO, [deab]LRU

d

(m, h)

Legend

[abcd ]FIFO Cache-set state

· ·d Memory access
(h, m), . . . Misses in pairs of

cache-set states

LRU
MRU

last-in
first-in

Competitive miss ratio = maximum ratio of misses in policy P relative
to the number of misses in policy Q in transition system
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Transition System is∞ Large

Problem: The induced transition system is∞ large.
Goal: Construct finite transition system with same properties.
Observation: Only the relative positions of elements matter:

[abc]LRU, [bde]FIFO [fgl]LRU, [ghm]FIFO≈

[cab]LRU, [cbd ]FIFO

(h, m)c

[lfg]LRU, [lgh]FIFO

(h, m)l

≈
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≈-Equivalent States in Running Example

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd ]FIFO, [abcd ]LRU
e

(m, m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd ]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m, m)

c

(h, m)
[deab]FIFO, [deab]LRU

d

(m, h)
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Finite Quotient Transition System

Merging ≈-equivalent states yields a finite quotient transition system:

[abcd ]FIFO, [abcd ]LRU

(h, h)

(m, m)

[abcd ]FIFO, [dabc]LRU

(h, h)

[eabc]FIFO, [edab]LRU

(m, m)

(m, h)

[eabc]FIFO, [ceda]LRU
(h, m)
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Competitive Ratio = Maximum Cycle Ratio

Competitive miss ratio = maximum ratio of misses in policy P relative
to the number of misses in policy Q in transition system

(1, 1)

(0, 0)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2
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Miss-Competitiveness Results

Miss-competitiveness ratios, constants relating FIFO, PLRU, and
LRU at the same associativity:

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7

FIFO vs LRU 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7
LRU vs PLRU 1, 0 − 2, 1 − − − 5, 4

PLRU vs LRU 1, 0 − ∞ − − − ∞
FIFO vs PLRU 2, 1 − 4, 4 − − − 8, 8

PLRU vs FIFO 2, 1 − ∞ − − − ∞

Example:
LRU(4) is 2-miss-competitive relative to PLRU(4) with constant 1.
PLRU(4) is not miss-competitive relative to LRU(4) at all.
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Hit-Competitiveness Results

Hit-competitiveness ratios, constants relating FIFO, PLRU, and LRU
at the same levels of associativity:

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

FIFO vs LRU 1
2 , 1

2
1
2 , 1 1

2 , 3
2

1
2 , 2 1

2 , 5
2

1
2 , 3 1

2 , 7
2

LRU vs PLRU 1, 0 − 1
2 , 1 − − − 1

8 , 15
8

PLRU vs LRU 1, 0 − 1
2 , 1 − − − 1

4 , 3
2

FIFO vs PLRU 1
2 , 1

2 − 1
4 , 5

4 − − − 1
11 , 19

11
PLRU vs FIFO 0, 0 − 0, 0 − − − 0, 0
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Generalizations

Identified patterns and proved generalizations by hand.

Previously unknown facts:
PLRU(k) is 1 comp. rel. to LRU(1 + log2k) with constant 0,

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is 1
2 hit-comp. rel. to LRU(k),

whereas

LRU(k) is 0 hit-comp. rel. to FIFO(k),

but

LRU(2k − 1) is 1 comp. rel. to FIFO(k) with constant 0.
−→ LRU-may-analysis can be used for FIFO
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Summary

Relative Competitiveness
. . . bounds performance of an online policy by that of another one,
. . . allows to derive guarantees on cache performance,
. . . can be computed automatically by building quotient system!

Thank you for your attention!
Questions?
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