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WCET Analysis

Controllers in planes, cars, plants, . . . often have to satisfy
hard real-time constraints

−→ Need to statically derive upper bounds on WCETs of tasks

execution
time

BCET ACET WCET upper
bound

variation due to inputs
and initial hardware state
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Caches

How they work:
I dynamically and transparently
I managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

[ac]

−→ Cache analysis statically derives guarantees on cache behavior
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Cache Analysis

Two types of cache analyses:
1 Local guarantees: classification of individual accesses

I May-Analysis −→ Overapproximates cache contents
I Must-Analysis −→ Underapproximates cache contents

2 Global guarantees: bounds on cache hits/misses
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Cache Replacement Policies

Least Recently Used (LRU) used in
INTEL PENTIUM I and MIPS 24K/34K

First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-IV and POWERPC 75X

Most Recently Used (MRU) as described in literature

Cache analyses almost exclusively for LRU
In practice: FIFO, PLRU, Pseudo Round-Robin, . . .
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Uncertainty in WCET Analysis

Precision of WCET analysis determined by amount of uncertainty
Uncertainty in cache analysis depends on replacement policy

execution
time

BCET ACET WCET upper
bound

uncertainty
×

penalty
variation due to inputs

and initial hardware state
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Uncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information
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Predictability Metrics

Evict
Fill

[dex ]
[fde]

[gfd ]

[hgf ][fec]

[gfe]

[fed ]

Sequence: 〈a, . . . , e, f, g, h〉
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Meaning of Metrics

Evict
I Number of accesses to obtain any may-information.
I I.e. when can an analysis predict any cache misses?

Fill
I Number of accesses to complete may- and must-information.
I I.e. when can an analysis predict each access?

−→ Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.
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Evaluation of Policies

Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k − 1 3k − 1 15 23
MRU 2k − 2 ∞/3k − 4 14 ∞/20
PLRU k

2 log2 k + 1 k
2 log2 k + k − 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

−→ Use LRU.

How to obtain may- and must-information within the given limits for
other policies?
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Relative Competitiveness

Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal
offline policy

I used to evaluate online policies

Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another
online policy

I used to derive local and global cache analyses
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Definition – Relative Miss-Competitiveness

Notation
mP(p, s) = number of misses that policy P incurs on

access sequence s ∈ M∗ starting in state p ∈ CP

Definition (Relative miss competitiveness)
Policy P is (k , c)-miss-competitive relative to policy Q if

mP(p, s) ≤ k ·mQ(q, s) + c

for all access sequences s ∈ M∗ and cache-set states p ∈ CP, q ∈ CQ

that are compatible p ∼ q.

Definition (Competitive miss ratio of P relative to Q)
The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.
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Example – Relative Miss-Competitiveness

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or∞-miss-competitive) relative to Q.
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Example – Relative Hit-Competitiveness

P is (2
3 , 3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x − 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to∞-miss-competitiveness.
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Local Guarantees: (1, 0)-Competitiveness

Let P be (1, 0)-competitive relative to Q:

mP(p, s) ≤ 1 ·mQ(q, s) + 0

⇔ mP(p, s) ≤ mQ(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.
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Global Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

2 Compute global guarantee for task T under policy Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P
relative to Q.

mP ≤ k ·mQ + c mQ(T) = mP(T)
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Relative Competitiveness – Automatic Computation

P and Q (here: FIFO and LRU) induce transition system:

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd ]FIFO, [abcd ]LRU
e

(m, m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd ]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m, m)

c

(h, m)
[deab]FIFO, [deab]LRU

d

(m, h)

Legend

[abcd ]FIFO Cache-set state

· ·d Memory access
(h, m), . . . Misses in pairs of

cache-set states

LRU
MRU

last-in
first-in

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system
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Transition System is∞ Large

Problem: The induced transition system is∞ large.
Observation: Only the relative positions of elements matter:

[abc]LRU, [bde]FIFO [fgl ]LRU, [ghm]FIFO≈

[cab]LRU, [cbd ]FIFO

(h, m)c

[lfg]LRU, [lgh]FIFO

(h, m)l

≈

Solution: Construct finite quotient transition system.
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≈-Equivalent States in Running Example

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd ]FIFO, [abcd ]LRU
e

(m, m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd ]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m, m)

c

(h, m)
[deab]FIFO, [deab]LRU

d

(m, h)
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Finite Quotient Transition System

Merging ≈-equivalent states yields a finite quotient transition system:

[abcd ]FIFO, [abcd ]LRU

(h, h)

(m, m)

[abcd ]FIFO, [dabc]LRU

(h, h)

[eabc]FIFO, [edab]LRU

(m, m)

(m, h)

[eabc]FIFO, [ceda]LRU
(h, m)
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Competitive Ratio = Maximum Cycle Ratio
Competitive miss ratio =

maximum ratio of misses in policy P to misses in policy Q

(1, 1)

(0, 0)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2
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Tool Implementation

Implemented in Java
Interface for replacement policies

Fully automatic
Provides example sequences for competitive ratio and constant

Analysis usually practically feasible up to associativity 8
I limited by memory consumption
I depends on similarity of replacement policies
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Generalizations
Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

−→ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 , k−1

2 ) hit-comp. rel. to LRU(k),

whereas

LRU(k) is not hit-comp. rel. to FIFO(k), but

LRU(2k − 1) is (1, 0) comp. rel. to FIFO(k),

and

LRU(2k − 2) is (1, 0) comp. rel. to MRU(k).
−→ LRU-may-analysis can be used for FIFO and MRU
−→ optimal with respect to predictability metrics

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.
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Measurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.
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Influence of Initial Cache State

execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)
Policy P is (k , c)-miss-sensitive if

mP(p, s) ≤ k ·mP(p′, s) + c

for all access sequences s ∈ M∗ and cache-set states p, p′ ∈ CP.
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Sensitivity Results

Policy 2 3 4 5 6 7 8
LRU 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

FIFO 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8
PLRU 1, 2 − ∞ − − − ∞
MRU 1, 2 3, 4 5, 6 7, 8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.
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Summary
Predictability Metrics

. . . bound the precision of any static cache analysis,

. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . can be computed automatically by building quotient system,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance,
. . . shows that measurement-based WCET analysis may be

dramatically wrong.
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Most-Recently-Used – MRU

MRU-bits record whether line was recently used

[abcd ]0101 b,d

[ebcd ]1101 e,b,d

[ebcd ]0010 c

e

c

−→ Never converges
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Pseudo-LRU – PLRU

1

1 0

a b c d

0

1 1

a b e d

1

1 1

a b e d

0

1 0

a b e f

Initial cache-
set state
[a, b, c, d ]110.

After a miss
on e. State:
[a, b, e, d ]011.

After a hit
on a. State:
[a, b, e, d ]111.

After a miss
on f . State:
[a, b, e, f ]010.

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.
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May- and Must-Information

MayP(s) :=
⋃

p∈CP

CCP(updateP(p, s))

MustP(s) :=
⋂

p∈CP

CCP(updateP(p, s))

mayP(n) :=
∣∣∣MayP(s)

∣∣∣ , where s ∈ S 6= ( M∗, |s| = n

mustP(n) :=
∣∣∣MustP(s)

∣∣∣ , where s ∈ S 6= ( M∗, |s| = n

S 6= : set of finite access sequences with pairwise different accesses
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Definitions of Metrics

EvictP := min
{

n | mayP(n) ≤ n
}

,

FillP := min
{

n | mustP(n) = k
}

,

where k is P’s associativity.

Jan Reineke Caches in WCET Analysis November 7th , 2008 33 / 33



Relation: Pred. Metrics↔ Rel. Competitiveness

Let P(k) be (1, 0)-miss-competitive relative to policy Q(l), then
(i) EvictP(k) ≥ EvictQ(l),
(ii) mlsP(k) ≥ mlsQ(l).
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Alternative Pred. Metrics↔ Rel. Competitiveness

Let l be the smallest associativity, such that LRU(l) is
(1, 0)-miss-competitive relative to P(k). Then

Alt-EvictP(k) = l .

Let l be the greatest associativity, such that P(k) is
(1, 0)-miss-competitive relative to LRU(l). Then

Alt-mlsP(k) = l .
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Size of Transition System

2l+l ′︸︷︷︸
status bits
of P and Q

·
k∑

i=0

(
k
i

)
︸ ︷︷ ︸

non-empty lines in P

·
k ′∑

i ′=0

(
k ′

i ′

)
︸ ︷︷ ︸

non-empty lines in Q

·
min{i,i ′}∑

j=0

(
i
j

)(
i ′

j

)
j!

︸ ︷︷ ︸
number of overlappings

in non-empty lines

min{k ,k ′}∑
j=0

(
k
j

)(
k ′

j

)
j! ≤ k ! · k ′!

min{k ,k ′}∑
j=0

1
(k − j)!j!(k ′ − j)!

≤ k ! · k ′!
∞∑

j=0

1
j!

= e · k ! · k ′!

This can be bounded by

2l+l ′+k+k ′ ≤ |(C l
k × C l ′

k ′)/ ≈ | ≤ 2l+l ′+k+k ′ · e · k ! · k ′!︸ ︷︷ ︸
bound on number of overlappings
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Set-Associative Caches

...

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Index Block 
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

=?

No: 
Miss!

Yes: 
Hit! MUX

Data

Jan Reineke Caches in WCET Analysis November 7th , 2008 33 / 33



Compatible States

iP = [⊥⊥⊥⊥]P iQ = [⊥⊥⊥⊥]Q≈

p

updateP(iP, s)

q

updateQ(iQ, s)

≈
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(1, 0)-Competitiveness and May/Must-Analyses

Let P be (1, 0)-competitive relative to Q, then

p q≈

p′

mP(p, 〈x〉) = 1

q′

mQ(q, 〈x〉) = 1

≈

=⇒
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(1, 0)-Competitiveness and May/Must-Analyses

CP CQ≈

P

S

Q

S

≈

P ′

∀p ∈ P : mP(p, 〈x〉) = 1

Q′

∀q ∈ Q : mQ(q, 〈x〉) = 1

≈

=⇒
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Case Study: Impact of Sensitivity

Simple model of execution time from Hennessy & Patterson (2003)
CPIhit = Cycles per instruction assuming cache hits only
Memory accesses

Instruction including instruction and data fetches

Twc

Tmeas
=

CPIhit+
Memory accesses

Instruction ×Miss ratewc×Miss penalty

CPIhit+
Memory accesses

Instruction ×Miss ratemeas×Miss penalty

= 1.5+1.2×0.20×50
1.5+1.2×0.05×50 = 13.5

4.5 = 3
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