
Caches in WCET Analysis
Predictability, Competitiveness, Sensitivity

Dissertation

Zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

von
Jan Reineke

Saarbrücken
2008

Tag des Kolloquiums: 07.11.2008

Dekan: Prof. Dr. Joachim Weickert

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Raimund Seidel

Gutachter: Prof. Dr. Dr. h.c. Reinhard Wilhelm
Prof. Dr. Eljas Soisalon-Soininen
Prof. Dr. Lothar Thiele

Akademischer Mitarbeiter: Dr. Philipp Lucas

Impressum
Copyright c© 2008 by Jan Reineke
Herstellung und Verlag: epubli GmbH, Berlin, www.epubli.de
Printed in Germany
ISBN: 978-3-941071-69-8

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen National-
bibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de
abrufbar.

Abstract

Embedded systems as they occur in application domains such as automotive, aeronautics,
and industrial automation often have to satisfy hard real-time constraints. Safe and
precise bounds on the worst-case execution time (WCET) of each task have to be derived.
This thesis studies the influence of cache replacement policies on the precision and
soundness of WCET analyses.
We define and evaluate predictability metrics that capture how quickly may and must
information can be obtained under a particular replacement policy. The metrics mark
a limit on the precision of any cache analysis.
We generalize the notion of competitiveness to that of relative competitiveness. Relative
competitive ratios bound the performance of a policy relative to that of another policy.
Constructing a quotient transition system enables us to automatically compute such
competitive ratios. Competitive ratios of LRU relative to FIFO and MRU yield the
first may cache analyses for the two policies. These analyses are optimal with respect
to the predictability metrics.
Measurement has been proposed as an alternative to static analysis in WCET analysis.
To evaluate the soundness of measurement-based WCET analysis, we investigate how
sensitive replacement policies are to the state they are starting in. Analysis reveals
that for FIFO, MRU, and PLRU, measurement may yield WCET estimates that are
dramatically wrong.

Zusammenfassung

Eingebettete Systeme in der Luft- und Raumfahrt, der Fahrzeugtechnik und der in-
dustriellen Automation müssen oft harten Echtzeitanforderungen genügen. Sichere und
enge Schranken für die maximale Laufzeit (WCET) eines Programms müssen hergeleitet
werden. Diese Arbeit untersucht den Einfluss der Cache-Ersetzungsstrategie auf die
Präzision und Zuverlässigkeit von WCET-Analysen.
Wir definieren und evaluieren Vorhersagbarkeitsmetriken, die erfassen wie schnell May-
und Must-Information für eine Ersetzungsstrategie erlangt werden kann. Diese Metriken
stellen Schranken für die Präzision beliebiger Cache-Analysen dar.
Wir verallgemeinern den Begriff der Competitiveness zu dem der relativen Competitive-
ness. Relative-Competitive-Verhältnisse begrenzen die Leistung einer Ersetzungsstrate-
gie im Verhältnis zur Leistung einer anderen. Durch die Konstruktion von Quotienten-
Transitions-Systemen können solche Verhältnisse automatisch berechnet werden. Die
Verhältnisse von LRU relativ zu FIFO und MRU begründen die ersten May-Cache-
Analysen für diese Strategien. Diese Analysen sind optimal in Bezug auf die Vorhersag-
barkeitsmetriken.
Messung wurde als Alternative zu statischen WCET-Analysen vorgeschlagen. Um die
Zuverlässigkeit messbasierter WCET-Analysen auszuwerten, analysieren wir wie stark
die Leistung einer Ersetzungsstrategie von ihrem Anfangszustand abhängt. Die Analyse
ergibt, dass Messung zu extrem falschen WCET-Schätzungen führen kann, falls FIFO,
MRU oder PLRU verwendet wird.

Acknowledgements

First of all, I have to express my gratitude to my advisor Prof. Reinhard Wilhelm for
giving me the opportunity to work in his group. He gave me the freedom and the support
to pursue research in a variety of interesting areas but also the guidance to do relevant
work. I learned a lot from him.
At the chair for programming languages and compiler construction I have had the chance
to get to know and work with many great people: Much of the work presented in this
thesis has been done in close collaboration with Daniel Grund. Thank you, I hope to
continue our enjoyable cooperation! Christoph Berg inspired much of the early work on
this thesis.
The following people deserve thanks for various subsets of {valuable discussions, instant
hardware support, collaboration, administrative advice, entertainment, proofreading,
basketball, football, defense preparations}: Mohamed Abdel Maksoud, Sebastian Alt-
meyer, Peter Backes, Jörg Bauer, Claire Burguière, Nico Fritz, Gernot Gebhard, Sebas-
tian Hack, Jörg Herter, Philipp Lucas, Oleg Parshin, Markus Pister, Marc Schlickling,
Rathijit Sen, Lili Tan, Björn Wachter. Thanks for planning and sometimes canceling
trips to Ilina Bach, Rosy Faßbender, and Stefanie Haupert-Betz.
I would also like to thank Prof. Eljas Soisalon-Soininen and Prof. Lothar Thiele for
serving as referees on my thesis committee.
Last but not least, I want to thank my parents for their love and support.

This work has been supported by the German Research Foundation (DFG) as part of the
transregional research center SFB/TR 14 AVACS, by the German-Israeli Foundation for
Scientific Research and Development (GIF), and by the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement number 216008 (Preda-
tor). It has benefited from discussions within the European Networks of Excellence
ARTIST2 and ARTIST DESIGN.

Contents

1 Introduction 11
1.1 Structure of the Thesis . 16

2 Caches 17
2.1 Processor Caches . 19
2.2 Replacement Policies . 21

2.2.1 Domains and Notations . 21
2.2.2 OPT – Optimal Replacement . 22
2.2.3 Least Recently Used . 23
2.2.4 First In, First Out . 24
2.2.5 Most Recently Used . 25
2.2.6 Pseudo-LRU . 26
2.2.7 Pseudo Round-Robin . 27
2.2.8 Implementation Issues . 28
2.2.9 Additional Domains and Notations 30

3 Abstract Interpretation 33
3.1 Collecting Semantics . 33
3.2 Abstract Semantics . 35
3.3 Data-Flow Analysis, MFP vs MOP . 38
3.4 Properties and Uncertainty . 39

4 Cache Analysis 43
4.1 May and Must Information . 46
4.2 Ferdinand’s LRU Analysis . 46
4.3 Other Approaches . 56

4.3.1 Local Classification . 56
4.3.2 Global Bounds . 57

4.4 Challenges and Outlook . 58

5 Predictability Metrics 59
5.1 Introduction . 59
5.2 Uncertainty in Cache Analysis . 61
5.3 Cache Predictability Metrics . 62
5.4 LRU Caches . 66
5.5 FIFO Caches . 66
5.6 MRU Caches . 68
5.7 PLRU Caches . 71
5.8 Related Work . 78
5.9 Summary, Conclusions, and Future Work 79

9

Contents

6 Relative Competitiveness of Replacement Policies 81
6.1 Introduction . 81
6.2 Relative Competitiveness . 82

6.2.1 Definition of Relative Competitiveness 83
6.2.2 Computing Bounds on Cache Performance 85
6.2.3 Obtaining May and Must Analyses 86
6.2.4 Relation to Predictability Metrics 87
6.2.5 General Competitiveness Properties 88

6.3 Computing Competitive Ratios . 89
6.3.1 Induced Transition System . 90
6.3.2 Quotient Transition System . 91
6.3.3 Computation of Competitive Ratios 97
6.3.4 Competitiveness Relative to OPT 100

6.4 Results . 102
6.4.1 Miss-Competitiveness . 102
6.4.2 Hit-Competitiveness . 104
6.4.3 Miss-Competitiveness Relative to OPT 106

6.5 Related Work . 108
6.6 Summary, Conclusions, and Future Work 109

7 Sensitivity of Replacement Policies 111
7.1 Introduction . 111
7.2 Sensitivity . 113

7.2.1 Definition of Sensitivity . 113
7.3 Computing Sensitive Ratios . 114

7.3.1 Induced Transition System . 115
7.3.2 Quotient Transition System . 115
7.3.3 Computation of Sensitive Ratios 116

7.4 Results . 118
7.5 Impact of Results on Timing Analysis . 120
7.6 Summary, Conclusions, and Future Work 121

8 Summary, Conclusions, and Future Work 123
8.1 Summary of Contributions . 123
8.2 Conclusions . 124
8.3 Future Work . 125

Bibliography 127

A Relative Competitiveness Results 135

B Non-Distributivity of Ferdinand’s LRU Analysis 145

C Mathematical Foundations 147

10

1
Introduction

Will my airbags save my life if I crash my car? The answer to this question critically
depends on the airbag controller correctly and timely detecting the crash and firing the
right airbags. The airbag controller is an example of an embedded system that has to
satisfy hard real-time constraints. It is a computer system interacting with the physical
environment: it reads sensor values and computes a response that will in turn affect
its environment. Besides functional correctness, timeliness of reactions is absolutely
necessary. Failure to react within a few milliseconds may be fatal. A schedulability
analysis needs to prove that all of the tasks involved in critical decisions will meet their
respective deadlines. As an input to such a schedulability analysis, safe and precise
bounds on the worst-case execution time (WCET) of each task have to be derived. This
thesis studies the influence of the cache on the precision, soundness, and construction of
WCET analyses.
Execution times of a task vary depending on the task’s inputs and the initial hardware
state. While the functional behavior is usually input-deterministic, the timing behavior
of a task under a particular input has become very dependent on the state of the hard-
ware. Caches, deep pipelines, and all kinds of speculation are used in today’s embedded
systems to improve average-case performance. Such components increase the variability
of execution times of instructions due to the possibility of timing accidents with high
penalties: a cache miss may take 100 times longer than a cache hit. Therefore, the
timing behavior strongly depends on the state of these components.

count

execution
time

BCET ACET WCET upper
bound

uncertainty
×

penalty

variation due to inputs and
initial hardware state

Figure 1.1: A distribution of execution times. The border cases are known as Best- and
Worst-Case Execution Time (BCET and WCET). Uncertainty comprises
timing accidents that cannot be excluded statically but never happen during
execution.

11

CHAPTER 1. INTRODUCTION

WCET analyses need to compute an upper bound on the execution time for all possible
initial hardware states and inputs. The precision of a WCET analysis greatly depends
on its ability to statically exclude as much detrimental behavior to the timing of the
program’s instructions as possible: cache misses, mispredicted branches, pipeline stalls,
etc. Exclusion of these so-called timing accidents tightens the upper bound by the asso-
ciated timing penalty, e.g., the cache miss penalty or the time to refill the pipeline. Each
timing accident that cannot be excluded statically but never happens during execution,
degrades the precision of the computed upper bound on the WCET as illustrated in
Figure 1.1.
Due to high miss penalties, caches have a particularly strong influence on both the
variation of execution times due to the initial hardware state and on the precision of
static WCET analyses. A cache’s behavior is controlled by its replacement policy. We
investigate the influence of the cache replacement policy on
• the amount of inherent uncertainty in static cache analysis, i.e., cache misses that

cannot be excluded statically but never happen during execution,

• the maximal variation in cache performance due to the initial cache state, and

• the construction of static cache analyses, analyses that statically classify memory
references as cache hits or misses.

The following sections explain the three problems in more detail and sketch our ap-
proaches and contributions.

Predictability Metrics –
Limits on the Precision of Static Cache Analyses

In static analysis there is a concept of may and must information. In alias analysis, for
instance, there are may and must aliases. Analogously, there is a concept of may and
must cache information in static cache analysis: may and must caches are upper and
lower approximations, respectively, to the contents of all concrete caches that will occur
whenever program execution reaches a program point. The must cache at a program
point is a set of memory blocks that are definitely in each concrete cache at that point.
The may cache is a set of memory blocks that may be in a concrete cache whenever
program execution reaches that program point. Corresponding to may and must cache
information, there are may and must cache analyses.
Must cache information is used to derive safe information about cache hits; in other words
it is used to exclude the timing accident “cache miss”. The complement of the may cache
information is used to safely predict cache misses. While some cache analyses explicitly
maintain may and must cache information, others do so only implicitly. Whenever a
cache analysis predicts a cache miss this prediction is based on may cache information,
be it explicit or implicit. Similarly, a cache hit prediction is always based on must cache
information.

12

evict fill

[dex]
[fde]

[gfd]
[hgf][fec]

[gfe]
[fed]

Figure 1.2: Initially different cache sets converge when accessing a sequence
〈a, b, c, d, e, f, g, h, . . .〉 of pairwise different memory blocks. Selected cache
sets are annotated with their contents.

Usually there is some uncertainty about the cache contents, i.e., the may and must
caches do not coincide; there are memory blocks which can neither be guaranteed to be
in the cache nor not to be in it. The greater the uncertainty in the must cache, the
worse the upper bound on the worst-case execution time, as illustrated in Figure 1.1.
Similarly, greater uncertainty in the may cache entails a less precise lower bound on the
best-case execution time.
There are several reasons for uncertainty about cache contents:
• Static cache analyses usually cannot make any assumptions about the initial cache

contents. Cache contents on entrance depend on previously executed tasks. Even
assuming a completely empty cache may not be conservative [Berg, 2006].

• At control-flow joins, analysis information about different paths needs to be safely
combined. Intuitively, one must take the intersection of the incoming must in-
formation and the union of the incoming may information. A memory block can
only be in the must cache if it is in the must caches of all predecessor control-flow
nodes, correspondingly for may caches.

• In data-cache analysis, the address analysis may not be able to exactly determine
the address of a memory reference. Then the cache analysis must conservatively
account for all possible addresses.

• Preempting tasks may change the cache state in an unpredictable way at preemp-
tion points [Gebhard and Altmeyer, 2007].

Since information about the cache state may thus be unknown or lost, it is important to
recover information quickly to be able to classify memory references safely as cache hits
or misses. This is possible for most caches. However, the speed of this recovery greatly
depends on the cache replacement policy. It influences how much uncertainty about
cache hits and misses remains. Thus, the speed of recovery is an indicator of timing
predictability.
We introduce two metrics, evict and fill, that indicate how quickly knowledge about
cache hits and misses can be (re-)obtained under a particular replacement policy. They

13

CHAPTER 1. INTRODUCTION

mark a limit on the precision that any cache analysis can achieve, be it by abstract
interpretation or any other sound method. Figure 1.2 illustrates the two metrics. evict
tells us at which point we can safely predict that some memory blocks are no more in
the cache, i.e., they are in the complement of may information. Any memory block not
contained in the last evict accesses cannot be in the cache set. The greater evict, the
longer it takes to gain may information. fill accesses are required to converge to one
completely determined cache set. At this point, complete may and must information
is obtained, which allows to precisely classify each memory access as a hit or a miss.
The two metrics mark a limit on any cache analysis: no analysis can infer any may
information (complete must information) given an unknown cache-set state and less
than evict (fill) memory accesses.
A thorough analysis of the LRU, FIFO, MRU, and PLRU policies yields the respective
values under these metrics. Under the two metrics, LRU is optimal, i.e., may- and must-
information can be obtained in the least possible number of memory accesses. PLRU,
MRU, and FIFO, perform considerably worse. Compared to an 8-way LRU, it takes
more than twice as many accesses to regain complete must-information for equally-
sized PLRU, MRU, and FIFO caches. As a consequence, it is impossible to construct
cache analyses for PLRU, MRU, and FIFO that are as precise as known LRU analyses.
Further analyses elaborate on these results and yield a more refined view on the limits of
cache analyses: While evict and fill constitute milestones in the recovery of information,
supplementary results show how information evolves in between.

Relative Competitiveness of Replacement Policies

Developing cache analyses – analyses that statically determine whether a memory access
associated with an instruction will always be a hit or a miss – is a difficult problem.
Precise and efficient analyses have been developed for set-associative caches that employ
the least-recently-used (LRU) replacement policy [Ferdinand et al., 1997,Ferdinand and
Wilhelm, 1999,White et al., 1997, Ghosh et al., 1998, Chatterjee et al., 2001]. Other
commonly used policies, like first-in-first-out (FIFO) or Pseudo-LRU (PLRU) are more
difficult to analyze [Reineke et al., 2007]. We are not aware of any published analysis that
may safely predict cache misses in the presence of FIFO, MRU, or PLRU replacement.
Relative competitive analyses yield upper (lower) bounds on the number of misses (hits)
of a policy P relative to the number of misses (hits) of another policy Q. For example,
a competitive analysis may find out that policy P will incur at most 30% more misses
than policy Q and at most 20% less hits in the execution of any task.
We propose the following approach to determine safe bounds on the number of cache
hits and misses by a task T under FIFO(k), PLRU(l)1, or any another replacement
policy:

1. Determine competitiveness of the desired policy P relative to a policy Q for which
a cache analysis exists, like LRU.

1k and l denote the respective associativities of FIFO(k) and PLRU(l).

14

2. Perform cache analysis of task T for policy Q to obtain a cache-performance pre-
diction, i.e., upper (lower) bounds on the number of misses (hits) by Q.

3. Calculate upper (lower) bounds on the number of misses (hits) for P using the
cache analysis results for Q and the competitiveness results of P relative to Q.

Step 1 has to be performed only once for each pair of replacement policies.
A limitation of this approach is that it only produces upper (lower) bounds on the
number of misses (hits) for the whole program execution. It does not reveal at which
program points the misses (hits) will happen, something many timing analyses need.
We will demonstrate that relative competitiveness results can also be used to obtain
sound may and must cache analyses [Ferdinand and Wilhelm, 1999], i.e., analyses that
can classify individual accesses as hits or misses.
We present a tool to automatically compute relative competitiveness results for a large
class of replacement policies, including LRU, FIFO, MRU, PLRU, and OPT. We
generalize some of the automatically computed results, which hold for fixed associativ-
ities, to arbitrary associativities. This is aided by the ability of our tool to generate
example memory access sequences that exhibit the worst-case relative behavior. One
of our results is that for any associativity k and any workload, FIFO(k) generates at
least half the number of hits that LRU(k) generates. Another result is that may cache
analyses for LRU can be safely used as may cache analyses for MRU and FIFO.

Sensitivity of Replacement Policies –
On the Correctness of Measurement-based Timing Analysis

Different methods have been proposed for timing analysis [Wilhelm et al., 2008]; mea-
surement2 [Petters, 2002,Bernat et al., 2002,Wenzel, 2006] and static analysis [Ferdinand
et al., 2001, Theiling et al., 2000] being the most prominent. Both methods compute
estimates of the worst-case execution times for program fragments like basic blocks.
If these estimates are correct, i.e., they are upper bounds on the worst-case execution
time of the program fragment, they can be combined to obtain an upper bound on the
worst-case execution time of the task.
While using similar methods in the combination of execution times of program fragments,
the two methods take fundamentally different approaches to compute these estimates:
• Static analyses based on abstract models of the underlying hardware compute

invariants about the set of all execution states at each program point under all
possible initial states and inputs and derive upper bounds on the execution time
of program fragments based on these invariants.

• Measurement executes each program fragment with a subset of the possible initial
states and inputs. The maximum of the measured execution times is in general an
underestimation of the worst-case execution time.

2Measurement-based timing analysis as discussed here is also referred to as hybrid measurement-based
timing analysis as opposed to end-to-end measurement-based analysis.

15

CHAPTER 1. INTRODUCTION

If the abstract hardware models are correct, static analysis computes safe upper bounds
on the WCETs of program fragments and thus also of tasks. However, creating ab-
stract hardware models is an error-prone and laborious process, especially if no precise
specification of the hardware is available.
The advantage of measurement over static analysis is that it is more easily portable
to new architectures, as it does not rely on such abstract models of the architecture.
In addition it may compute more precise estimates of the WCET. On the other hand,
soundness of measurement-based approaches is often hard to guarantee. Measurement
would trivially be sound if all initial states and inputs would be covered. Due to their
huge number this is usually not feasible. Instead, only a subset of the initial states and
inputs can be considered in the measurements. We study whether measurement-based
timing analysis can be safely performed in the presence of unlocked caches. To this end,
we introduce the notion of sensitivity of a cache replacement policy.
Sensitivity of a cache replacement policy expresses to what extent the initial state of the
cache may influence the number of cache hits and misses during program execution. We
first describe how to adapt the method to determine relative competitiveness relations to
automatically compute sensitivity properties. However, our main contributions besides
the introduction of sensitivity are the application of the analysis to relevant policies
and the interpretation of the analysis results with respect to measurement-based timing
analysis: Analysis results demonstrate that the initial state of the cache can have a
strong impact on the number of cache hits and misses during program execution if
FIFO, MRU, or PLRU replacement is used. A simple model of execution time is used
to evaluate the impact of cache sensitivity on measured execution times. The model
shows that underestimating the number of misses as strongly as is possible for FIFO,
MRU, and PLRU may yield worst-case-execution-time estimates that are dramatically
wrong. In a slightly modified analysis we show that the “empty cache is worst-case
initial state” assumption [Petters, 2002] is wrong for FIFO, MRU, and PLRU. On the
other hand, our analysis results show that LRU lends itself well to measurement- or
simulation-based approaches as the influence of the initial cache state is minimal.

1.1 Structure of the Thesis

In Chapter 2, we introduce general cache notions and describe all replacement policies
studied in this thesis. Chapter 3 describes abstract interpretation, a theory of sound
approximation of semantics. Mathematical foundations of abstract interpretation and
data-flow analysis required there can be found in Appendix C. Chapter 4 discusses
challenges in cache analysis and presents state-of-the-art may and must analyses for
LRU based on abstract interpretation.
Chapter 5 explores limits on the precision of static cache analyses by introducing and
evaluating predictability metrics. Chapter 6 studies the relative competitiveness of cache
replacement policies and how it can be used to obtain new cache analyses. Chapter 7
studies the sensitivity of cache replacement policies and discusses its impact on the
correctness of measurement-based timing analysis. Finally, Chapter 8 concludes.

16

Ideally one would desire an indefinitely large memory capac-
ity such that any particular [. . .] word would be immediately
available. [. . .] We are [. . .] forced to recognize the possibil-
ity of constructing a hierarchy of memories, each of which has
greater capacity than the preceding but which is less quickly
accessible.

A. W. Burks, H.H. Goldstine, and J. von Neumann (1946)

2
Caches

Since the early days of the computer, architects are faced with the problem that different
memory technologies are either fast but expensive (and thus small1) or cheap (and thus
possibly large) but slow, but not both fast and cheap at the same time. As the above
quotation demonstrates, it was recognized early on, that it is necessary to construct
hierarchies of memory of different technologies to obtain a large and on the average fast
memory.
Figure 2.1 depicts a typical memory hierarchy of a modern personal computer. Access
latencies range from one cycle for accesses to the small and expensive register file to
millions of cycles for accesses to the spacious hard disk. Observe that different parts of
the memory hierarchy are managed by different entities. In contrast to the registers, the
main memory, and the hard disk, which are managed by the compiler and the operating
system, respectively, the caches are managed by the hardware. As a consequence their
existence is transparent to software running on the system in terms of functional beha-
vior. So how do caches work and why do memory hierarchies and in particular caches
usually work?

1In fact, it is not just a matter of how much one is willing to pay. For a given guaranteed latency,
technological constraints obviate the construction of an arbitrarily large memory.

I-Cache

Microprocessor:

L2
Cache

Main
memory

Hard
disk

I/O busMemory
bus

Size:
Latency:

Cost per bit:
Managed by:

~ 32 KB
~ 3 cycles
very high
Hardware

~ 2 MB
~ 15 cycles

high
Hardware

~ 1 GB
~ 200 cycles

medium
Operating System

~ 300 GB
~ 10,000,000 cycles

extremely low
Operating System

Register
File

~ 1 KB
1 cycle

very high
Compiler

D-Cache

Figure 2.1: Memory hierarchy of a personal computer.

17

CHAPTER 2. CACHES

How they work.

Caches store a small subset of the data of the backing store, e.g. the main memory in
the case of processor caches. Memory accesses are serviced from the cache. If it contains
the referenced data, a cache hit, the data can be returned at a low latency. Upon a cache
miss, i.e., the data is not contained in the cache, it first needs to be transferred from
the backing store to the cache, replacing other data. Due to the employed technology,
access latencies to the cache are much lower than those of the backing store. If most
accesses are cache hits the average latency is close to that of the cache. However, due
to the relatively small size of the cache, the average cost per bit of storage is closer to
that of the backing store.

Why they work.

Why are caches and other building blocks of a memory hierarchy usually effective?
They benefit from locality of reference (also called the principle of locality). Two types
of locality are typically distinguished:
• Temporal locality: Resources that have been referenced recently are likely to be

referenced again soon afterwards.

• Spatial locality: The likelihood of referencing a resource is greater if a resource
near it has been referenced recently.

Caches exploit both types of locality:
• By caching resources that have been referenced recently.

• By not only caching the referenced resources but also its immediate neighborhood.
In the case of processor caches, cache lines which are fetched upon a cache miss
are larger blocks of data that contain the referenced instructions or data.

Other building blocks of memory hierarchies that we have seen are the register file and
the main memory. The register file is managed by the compiler, which tries to keep the
values of as many as possible variables in registers that are currently live. Paging is
the mechanism usually implemented by the operating system to manage the contents
of main memory. Many of the algorithms used for paging are similar to those used in
processor caches.
Further examples of cache organizations include the Translation Lookaside Buffer (TLB),
the Branch Target Buffer (BTB, also known as Branch Target Instruction Cache), web
proxy caches, DNS caches, and database caches.

Overview.

In the remainder of this chapter we will concentrate on processor cache organizations
occurring in embedded real-time systems. The following section discusses the organiza-
tion of individual caches, i.e., the building blocks of cache hierarchies. The succeeding
section is devoted solely to replacement policies as they are the main topic of this thesis.

18

2.1. PROCESSOR CACHES

2.1 Processor Caches

Processor caches are located on the die of the microprocessor. Depending on their
position in the cache hierarchy, they are either connected to lower level caches or to the
main memory via the memory bus.
This section shall discuss how an individual processor cache is logically organized, i.e.,
how it is structured internally, and how it manages memory accesses.
To reduce traffic and management overhead, the main memory is logically partitioned
into a set of memory blocks M of size b bytes. Memory blocks are cached as a whole in
cache lines of equal size. This approach is viable due to spatial locality. Usually, b is a
power of two. This way the block offset is determined by the most significant bits of a
memory address.
When accessing a memory block one has to determine whether the memory block is
currently stored in the cache (cache hit) or not (cache miss). To enable an efficient
look-up, each memory block can be stored in a small number of cache lines only. For
this purpose, caches are partitioned into equally-sized cache sets. The size of a cache set
is called the associativity k of the cache. The number of such equally sized cache sets s
is usually a power of two, such that the set number is determined by the least significant
bits of the block number, the index. There are two special instances of set-associative
caches:
• Caches with associativity 1, i.e., the address uniquely determines the location of

the data in the cache. This is called direct-mapped. Such caches are particularly
cheap to implement, as the cache lookup is very simple: it is not necessary to
compare several tags to determine whether an access is a hit or a miss.

• Caches with only one set, i.e., all addresses map to the same set and could be
stored in any line of the cache. Such fully-associative caches are only implemented
in hardware for very small caches, as the cache lookup and replacement policy is
otherwise too expensive to implement. Examples of fully-associative caches are
most translation-lookaside buffers and small branch target instruction caches.

Typical associativities are powers of two less than or equal to 32.
The remaining most-significant bits of the address, known as the tag are stored along
with each cache line to finally decide, whether and where a memory block is cached
within a set. Figure 2.2 illustrates the organization of a set-associative processor cache.
In the illustration, the cache is vertically divided into its cache sets. It can be horizontally
divided into its k ways. A way contains one line per cache set.
Let us go through the actions taken by the cache upon a reading memory access using
Figure 2.2. The index of the address determines the cache set which might contain the
requested data. To determine whether it is indeed contained, the tags of the cache set’s
lines are compared to the tag of the address. To reduce the latency on a hit, this can be
done in parallel. If the referenced block is found, the block offset is used to return the
appropriate part of the block. Upon a cache miss, the block containing the requested
address is fetched from memory and inserted into the appropriate cache set.

19

CHAPTER 2. CACHES

...

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Index Block
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

=?

No:
Miss!

Yes:
Hit! MUX

Data

Figure 2.2: Logical organization of a k-way set-associative cache

Since the number of memory blocks that map to a set is usually far greater than the
associativity of the cache, a so-called replacement policy must decide which memory
block to replace upon a cache miss. To facilitate useful replacement decisions a number
of status bits is maintained that store information about previous accesses. The following
section is devoted to describing replacement policies in detail.
We have seen how reading memory access are handled. There are several choices in the
design of a processor cache regarding writing accesses. Two questions arise:

1. When is the data written to the backing store?
Either the data is written immediately to the backing store on every write or it is
only written to the backing store when its cache line is replaced from the cache.
The former write policy is called write-through, the latter write-back. Write-through
may cause unnecessary data transfers to the backing store if a cache line is modified
several times before being replaced. On the other hand write-back requires an
additional status bit to indicate whether a cache line has been modified and must
therefore be written back.

2. What happens upon a write-miss?
If the memory block being modified is not contained in the cache, one can either
bypass the cache and make the modification in the backing store (no write-allocate)
or one can allocate a cache line and write to that line (write-allocate). Write-back
caches usually use write-allocate hoping that subsequent writes to the same block
will be captured by the cache. Write-through caches usually use no write-allocate
as subsequent writes to the same block will have to be written through, too.

20

2.2. REPLACEMENT POLICIES

Another design choice in processor caches is whether to use physical or virtual addresses
for tags and indices. Embedded systems currently do not employ virtual memory, so we
will not elaborate on the various possibilities involving virtual addresses. An extensive
discussion can be found in [Jacob et al., 2007].

2.2 Replacement Policies

Since caches can only store a small subset of the contents of the backing store, eventually
its sets will fill up. Upon a cache miss to a “full” cache set, the replacement policy has
to decide which memory block to replace. Most replacement policies base this decision
solely on accesses to that particular cache set. We are aware of only one exception to
this rule: the Pseudo Round-Robin policy employed in the Motorola Coldfire
5307 [Thesing, 2004].
The goal of the replacement policy is to minimize the number of cache misses. To this
end it tries to replace the “least useful” memory block of a cache set.
We will now explain prominent replacement policies that follow different strategies to
identify the “least useful” block:

• Belady’s OPT – the optimal offline replacement policy

• Least Recently Used (LRU) used in Intel Pentium I and MIPS 24K/34K

• First-In First-Out (FIFO or Round-Robin) used in Motorola PowerPC 56x,
Intel XScale, ARM9, ARM11

• Most Recently Used (MRU) as described in [Al-Zoubi et al., 2004,Malamy et al.,
1994]

• Pseudo-LRU (PLRU) used in Intel Pentium II-IV and PowerPC 75x

• Pseudo Round-Robin (Pseudo-RR) used in Motorola Coldfire 5307, as
described in [Thesing, 2004]

Except for Pseudo-RR, these policies treat each cache set independently of the other
sets. Therefore, it usually suffices to present their behavior on individual cache sets. In
addition to describing the way the policies operate, we will try to give an intuition of
what makes it easy or difficult to statically predict their behavior. In Chapter 5 we will
substantiate these intuitions.

2.2.1 Domains and Notations

Figure 2.3 introduces domains and metavariables for memory blocks , cache-set states ,
and update-functions that model the behavior of the replacement policies.
Each replacement policy P induces a set of reachable cache-set states CP . After starting
up the hardware, each cache-set is in its initial state iP . Cache replacement policies
change a cache set’s state upon memory accesses. We represent cache sets by tuples

21

CHAPTER 2. CACHES

a, b, c ∈ M the set of memory blocks
⊥, a, b, c ∈ M⊥ = M ∪ {⊥} the set of memory blocks of empty lines

P,Q ∈ Policy the class of replacement policies

[b, e, c, f]
P
, iP , p, q ∈ CP ⊆Mk

⊥ × Bl the set of reachable cache-set states
of policy P with iP the initial state of P
after starting up the hardware

updateP ∈ CP ×M → CP function modeling the effect of accessing
a memory block under policy P

Figure 2.3: Domains and notations.

of memory blocks. For example, a set consisting of 4 lines containing memory blocks
b, c, e, d may be denoted as [b, c, e, d] ∈ CP ⊆ M4

⊥. Invalid (empty) cache lines are
denoted by ⊥. Depending on the policy, the order of the memory blocks in the tuple
will have different meanings. In the case of MRU and PLRU additional status bits will
be necessary to represent cache states, as in [c, d, e, b]0111 ∈ CMRU(4) ⊆ M4

⊥ × B4. Their
meaning will be explained in the description of the respective policies. In general, cache-
set states of replacement policies that can be implemented in hardware use only a finite
number of status bits. For any policy P , CP ⊆ Mk

⊥ × Bl, where k is the associativity
of P and l is the number of status bits, which might be 0. We sometimes call memory
blocks contained in cache sets simply elements. If it is not clear from the context which
policies the states belong to, we will denote it by a subscript, as in [a, b, c, d]LRU(4), where
4 denotes the associativity of the cache. To be able to precisely argue about the different
replacement policies later, we provide formal definitions of their semantics in terms of
functions updateP : CP ×M → CP . updateP (q, c) computes the cache-set state after
accessing memory block c in cache-set state q in policy P .

2.2.2 OPT – Optimal Replacement

In 1966, [Belady, 1966] proposed OPT, an offline policy. It is also known as MIN and
BEL. OPT replaces the memory block that will not be accessed for the longest time
in the future. It was first proven to be optimal by [Mattson et al., 1970]. Later, [Roy,
2007] and [Vogler, 2008] gave short proofs of its optimality.
In the case of OPT, the order of elements in our representation of cache sets does not
matter, because the policy bases its decisions solely on future accesses. This will not
be the case for the online policies. [a, b, c, d] represents the same cache set as [d, c, a, b];
they should be interpreted as sets.

Example. Consider the sequence of accesses e, f, a, g, a, d, e, c, b, f, . . . and the initial
state [a, b, c, d]. The first seven accesses of the sequence will result in the following
behavior:

22

2.2. REPLACEMENT POLICIES

[a, b, c, d] [a, e, c, d]
e

evict b
[a, e, f, d]

f

evict c

a

[a, e, g, d]
g

evict f

a,d,e

The access to e evicts b, as b’s next use is farther away than the next uses of a, c, and
d. Then, f replaces c. The access to a results in a hit and does not change the state.
The following access to g evicts f , although it has just been added to the cache set. The
accesses to a, d, and e are hits. Given our limited knowledge of the access sequence it is
not clear which element would be evicted on the following access to c.

OPT cannot actually be implemented, as knowledge of future accesses is necessary
to make a replacement decision; it is an offline algorithm. Although OPT cannot be
implemented it is very useful in evaluating the quality of implementable online policies,
as in competitive analysis [Sleator and Tarjan, 1985] or empirical evaluations on full
traces [Al-Zoubi et al., 2004].

2.2.3 Least Recently Used

Least Recently Used (LRU) replacement replaces the least-recently-used element on a
cache miss. It conceptually maintains a queue of length k for each cache set, where k is
the associativity of the cache. In the case of LRU, [b, c, e, d] denotes a cache set, where
elements are ordered from most- to least-recently-used, i.e., b is the most-recently-used
element and d is the least-recently-used element. If an element is accessed that is not
yet in the cache (a miss), it is placed at the front of the queue. The last element of
the queue is then removed if the set is full. In our example, an access to f would thus
result in [f, b, c, e]. The least-recently-used element d is replaced. Upon a cache hit, the
accessed element is moved from its position in the queue to the front, in this respect
treating hits and misses equally. Accessing c in [f, b, c, e] results in [c, f, b, e].
Formally, CLRU(k) ⊆Mk

⊥, iLRU(k) = [⊥, . . . ,⊥], and updateLRU(k)(q, c), where k denotes
the associativity of the cache, is defined as follows:

updateLRU(k)([a1, . . . , ak]LRU(k), c) :=

{
[ai, a1, . . . , ai−1, ai+1, . . . , ak]LRU(k)

if c = ai
[c, a1, . . . , ak−1]LRU(k) if ∀i : c 6= ai

updateLRU(k) models the logical behavior of LRU, not its hardware implementation. A
hardware implementation of LRU would not shift the memory blocks around. Instead
it would maintain status bits that capture the logical ordering of the memory blocks.

Notion of Age

One can associate an age with a memory block a by counting the number of different
memory blocks accessed after the last access to a. With this notion of age, LRU orders
elements by increasing age from age 0 (most-recently-used) to k−1 (least-recently-used).
Upon a miss, the oldest element, i.e. the one with age k − 1 is replaced.

23

CHAPTER 2. CACHES

Rationale behind LRU

LRU performs very well in practice. The rationale behind replacing the least-recently-
used element is that the longer an element has not been accessed the less likely it is to
access it again in the near future. Conversely, if an element has just been accessed it is
likely to be accessed again soon. LRU may be considered the natural online counterpart
of the offline policy OPT: Whereas OPT replaces the element that will not been used
for the longest time, LRU replaces the element that has not been used for the longest
time.

Predictability

LRU has been the target of most cache analyses [Ferdinand et al., 1997,Ferdinand and
Wilhelm, 1999,White et al., 1997, Ghosh et al., 1998, Chatterjee et al., 2001]. It has
some desirable properties that make it easier to analyze than other policies:
• It treats hits and misses similarly: Even if it is unknown whether an access is a hit

or a miss, an analysis can gain valuable information about the state of the cache
set after the access.

• The amount of information gained on each access is usually greater than the in-
formation gained in other policies even if the access can be classified.

Our studies of predictability metrics and the sensitivity of replacement policies shed
more light on this.

2.2.4 First In, First Out

First In, First Out (FIFO, also known as Round-Robin) bases its replacement decisions
on when an element entered the cache, not on the time of its most-recent use. It replaces
the element which has been resident in the cache for the longest time.
FIFO cache sets can also be seen as a queue: new elements are inserted at the front
evicting elements at the end of the queue. This resembles LRU. In contrast to LRU,
hits do not change the queue. In our representation of FIFO cache sets, elements are
ordered from last-in to first-in: Assume an access to f . In [b, c, e, d], d will be replaced
on a miss resulting in [f, b, c, e].
Formally, CFIFO(k) ⊆ Mk

⊥, iFIFO(k) = [⊥, . . . ,⊥], and updateFIFO(k)(q, c) is defined as
follows:

updateFIFO(k)([a1, . . . , ak]FIFO(k), c) :=

{
[a1, . . . , ak]FIFO(k) if c = ai
[c, a1, . . . , ak−1]FIFO(k) if ∀i : c 6= ai

FIFO is a popular policy mainly because it can be implemented cheaply. In many
benchmarks it performs only slightly worse than LRU [Al-Zoubi et al., 2004], although
there are some exceptions, where FIFO incurs a considerable performance degradation
compared with LRU.

24

2.2. REPLACEMENT POLICIES

Predictability

Due to its non-uniform treatment of hits and misses, it is difficult to obtain information
about FIFO cache contents in a static cache analysis: An element may be evicted right
after being accessed, if it resides in the first-in position. Statically predicting cache
misses for FIFO is hard, as we will later demonstrate.

2.2.5 Most Recently Used

Most Recently Used (MRU) does not replace the most-recently-used element. Instead
it stores one status bit per cache line. In the following, we call these bits MRU-bits.
Every access to a line sets its MRU-bit to 1, indicating that the line was recently used.
Whenever the last remaining 0 bit of a set’s status bits is set to 1, all other bits are
reset to 0. Upon a cache miss, a line whose MRU-bit is 0 is replaced. At cache misses,
the line with lowest index (in our representation the left-most) whose MRU-bit is 0 is
replaced.
We represent a state of an MRU cache set as [a, b, c, d]0101, where 0101 are the MRU-bits
and a, . . . , d are the contents of the set. On this state an access to e would yield a cache
miss and the new state [e, b, c, d]1101, i.e., the left-most element with MRU-bit 0 has
been replaced. Accessing d leaves the state unchanged. A hit on c forces a reset of the
MRU-bits: [e, b, c, d]0010.
Formally, CMRU(k) ⊆ Mk

⊥ × Bk, iMRU(k) = [⊥, . . . ,⊥]0...0, and updateMRU(k)(q, c) is
defined as follows:

updateMRU(k)([a1, . . . , ak]u1...uk
, c) :=

[a1, . . . , ak]u1...ui−11ui+1...uk
if c = ai ∧ ∃j 6= i : uj = 0

[a1, . . . , ak]0 . . . 0| {z }
i−1

1 0 . . . 0| {z }
k−i

if c = ai ∧ ∀j 6= i : uj = 1

[a1, . . . , ai−1, c, ai+1, . . . , ak]u1...ui−11ui+1...uk
if ∀i : c 6= ai ∧ ∀j < i : uj = 1

∧ ui = 0 ∧ ∃j > i : uj = 0
[a1, . . . , ai−1, c, ai+1, . . . , ak]0 . . . 0| {z }

i−1

1 0 . . . 0| {z }
k−i

if ∀i : c 6= ai ∧ ∀j 6= i : uj = 1

Predictability

Replacement behavior of MRU is heavily influenced by when the “last” bit is set to 1
and all other bits are reset to 0. This asymmetry in the last bit set to 1 makes MRU
unpredictable. We will later see that it is impossible to ever infer the precise contents
of an MRU cache set.

25

CHAPTER 2. CACHES

2.2.6 Pseudo-LRU

Pseudo-LRU (PLRU) is a tree-based approximation of the LRU policy. It arranges the
cache lines at the leaves of a tree with k−1 “tree bits” pointing to the line to be replaced
next; a 0 indicating the left subtree, a 1 indicating the right. After every access, all
tree bits on the path from the accessed line to the root are set to point away from the
line. Other tree bits are left untouched. Consider the following example of 3 consecutive
accesses to a set of a 4-way set-associative PLRU cache:

1

1 0

a b c d

0

1 1

a b e d

1

1 1

a b e d

0

1 0

a b e f

Initial cache-set
state [a, b, c, d]110.

After a miss on e.
State: [a, b, e, d]011.

After a hit on a.
State: [a, b, e, d]111.

After a miss on f .
State: [a, b, e, f]010.

In the initial state of the example, the tree bits point to the line containing memory
block c. We textually represent a PLRU-state by the contents of its cache lines and
the preorder traversal of its tree bits. The initial state in the example is thus written
[a, b, c, d]110. A miss on e evicts the memory block c which was pointed to by the tree
bits. To protect e from eviction, all tree bits on the path to the root of the tree are
made to point away from it. Similarly, upon the following hit on a, the bits on the path
from a to the root of the tree are made to point away from a. Note that they are not
necessarily flipped. Another access to a would not change the tree bits at all as they
already point away from a. Finally, a miss on f eliminates d from the cache set. So,
CPLRU(k) ⊆Mk

⊥ × Bk−1 and iPLRU(k) = [⊥, . . . ,⊥]0...0.
For associativity 1, updatePLRU(k) is trivial:

updatePLRU(1)([a1], c) := [c]

updatePLRU(k) can be defined recursively expressing the update of a 2k-associative set
in terms of the update of a k-associative one: Let updatePLRU(k)([a1, . . . , ak]l1...lk−1

, c) =

[a′1, . . . , a
′
k]l′1...l′k−1

and updatePLRU(k)([b1, . . . , bk]r1...rk−1
, c) = [b′1, . . . , b

′
k]r′1...r′k−1

. Then:

updatePLRU(2k)([a1, . . . , ak, b1, . . . , bk]ul1...lk−1r1...rk−1
, c) :=

[a′1, . . . , a
′
k, b1, . . . , bk]1l′1...l′k−1r1...rk−1

if ∃i : c = ai

[a1, . . . , ak, b
′
1, . . . , b

′
k]0l1...lk−1r

′
1...r

′
k−1

else if ∃i : c = bi

}
“hit”

[a′1, . . . , a
′
k, b1, . . . , bk]1l′1...l′k−1r1...rk−1

else if ∃i : ai = ⊥
[a1, . . . , ak, b

′
1, . . . , b

′
k]0l1...lk−1r

′
1...r

′
k−1

else if ∃i : bi = ⊥

}
“miss” invalid

[a′1, . . . , a
′
k, b1, . . . , bk]1l′1...l′k−1r1...rk−1

else if u = 0

[a1, . . . , ak, b
′
1, . . . , b

′
k]0l1...lk−1r

′
1...r

′
k−1

else if u = 1

}
“miss” valid

26

2.2. REPLACEMENT POLICIES

In the “hit” case, we need to flip the u bit away2 from the subtree that c is contained in
and update the subtree similarly. In the “miss” case, we need to insert c into the subtree
pointed to by the u bit unless there is an invalid/empty line:
PLRU as described in [Freescale Semiconductor Inc., 2002] has a special treatment of
invalid lines: On a cache miss, invalid lines are filled from left to right, ignoring the tree
bits. However, the tree bits are still updated.

Predictability or PLRU vs LRU

PLRU is much cheaper to implement than true LRU in terms of storage requirements
and update logic. In practice PLRU performs well [Al-Zoubi et al., 2004]. However,
in rare cases, its replacement decisions differ substantially from those of LRU, i.e., it
does not replace the least-recently-used element. The reason is that accesses do not only
protect themselves from eviction; they also “rejuvenate” their neighborhood. Consider
the following example:

1

1 0

a b c d

0

1 0

a b c d

1

0 0

a e c d

Initial cache-set state.
State: [a, b, c, d]110.

After accessing d. State:
[a, b, c, d]010.

After a miss on e. State:
[a, e, c, d]100.

In the initial state a miss would evict c. However, accessing its neighbor d flips the tree
bit at the root of the tree. The access to d protects c as well. The following miss evicts b
instead of c. In this way, elements may survive indefinitely without ever being accessed.
This property is detrimental to its predictability. Our predictability metrics will precisely
quantify this. Furthermore, our relative competitiveness study shed more light on the
relation of PLRU and LRU.

2.2.7 Pseudo Round-Robin

Pseudo Round-Robin (Pseudo-RR) is the replacement policy used in the Motorola
Coldfire 5307 [Thesing, 2004]. In contrast to the policies described previously, cache
sets are not managed independently by Pseudo-RR: Replacement decisions for a cache
set are not only based on accesses to that particular cache set, but also on other accesses.
Pseudo-RR maintains one modulo-k counter for the entire cache, where k is the asso-
ciativity of the cache. This counter points to one of the k ways of the cache. In other
words, the counter points to one cache line in each cache set.

2If it already points away from the accessed element, it will be left unchanged.

27

CHAPTER 2. CACHES

Upon a cache miss, the cache line in the referenced set pointed to by the counter is
replaced. Then, the counter is incremented. On a cache hit the counter is left untouched.
Consider the following example.

Example. The subscripts in the symbolic addresses denote the index part of the address,
e.g. a3 is an address whose index is 3. a3 thus maps to cache set 3. The global modulo-4
counter is illustrated by an arrow pointing to the respective way:

Way
Set 0 1 2 3 . . . 127

0 b0 c1 f2 d3 . . . b127

→1 − b1 a2 − . . . g127

2 e0 f1 d2 f3 . . . d127

3 f0 a1 − b3 . . . c127

accessing
〈d1a2e3〉
yields

Way
Set 0 1 2 3 . . . 127

0 b0 c1 f2 d3 . . . b127

1 − d1 a2 − . . . g127

2 e0 f1 d2 e3 . . . d127

→3 f0 a1 − b3 . . . c127

In the example, the counter initially points to way 1. Accessing d1 incurs a cache miss,
replacing b1 and incrementing the counter to 2. The access to a2 is a hit leaving the
counter unchanged. Finally, e3 incurs another miss, replacing f3 in set 3 and way 2.
The counter is incremented to way 3.

Predictability

Pseudo-RR can be seen as a cheaper to implement variant of FIFO, which is also
known as Round-Robin. FIFO is already quite unpredictable in itself. The difference
is that FIFO maintains one counter per set, whereas Pseudo-RR shares one counter
among all sets. By sharing one counter among all sets, uncertainty about memory
accesses in one set spreads to uncertainty in other sets. Assume an analysis has inferred
that the global counter currently points to way 1 of the cache. It takes only 3 accesses
that cannot be classified as hits or misses to completely lose this information. If one
does not know the position of the counter, it is unclear which elements are evicted on
cache misses. This yields further uncertainty about memory accesses later.

2.2.8 Implementation Issues

Although LRU achieves higher cache hit ratios than FIFO or PLRU on the average,
the latter policies are more widely used in hardware caches. Why is that? The choice
of which policy to implement is governed by two properties, performance and the cost
of implementation.

Performance

The cache hit ratio has a strong impact on the cache performance. However, it also
depends on the miss and the hit latencies. Upon a miss, the operations performed by
the replacement policy are usually not on the critical path, as the requested memory

28

2.2. REPLACEMENT POLICIES

block needs to fetched from the backing store, a slower device in the memory hierarchy.
However, in the case of a hit, the replacement policies’ operations are on the critical
path, as the requested memory block is immediately available. This is one of the reasons
for implementing FIFO instead of LRU. Upon a cache hit, LRU needs to “move” the
cache line that was accessed to the most-recently-used position and shift other lines
down3. FIFO simply ignores the access and can thus provide a better hit latency.

Cost of Implementation

Different policies consume different amounts of die area. Area consumption can be
divided into two parts: storage of status bits, like the PLRU tree bits, and circuits
implementing the actual update and replacement logic.
The following table shows the minimal number of status bits required to implement the
replacement policies per cache set in terms of the associativity k of the cache.

Policy # Status bits in terms of k k = 4 k = 8 k = 16 k = 32
LRU dlog2(k!)e ∈ O(k · log2k) 5 16 45 118

FIFO dlog2ke 2 3 4 5
MRU k 4 8 16 32

PLRU k − 1 3 7 15 31

LRU needs dlog2(k!)e status bits to encode the k! different orderings of its cache lines
regarding recent accesses. In contrast, FIFO needs to maintain a simple replacement
counter, pointing to the cache line to replace next. The number of status bits for MRU
and PLRU follow directly from the description of the two policies. In contrast to the
other policies, Pseudo-RR does not maintain independent status bits for each set.
Instead it maintains only dlog2ke status bits for the entire cache.
At higher associativities it becomes quite expensive to implement LRU in terms of status
bits. In addition, many implementations use more than the minimal number of status
bits. This way it is possible to reduce the length of the critical path upon cache hits.
In general, there are often several alternative implementations of a given policy that
represent different tradeoffs between implementation cost and hit latency [Peir et al.,
1998, Sudarshan et al., 2004]. [Ackland et al., 2000] have shown that in contrast to
popular belief among computer architects, LRU replacement can be implemented with
a 1-cycle update up to associativity 16.
Studies of average-case cache hit ratios [Al-Zoubi et al., 2004] show only a small advan-
tage of LRU over FIFO, MRU, and PLRU. In some cases, it is even outperformed by
the latter. Regarding its disadvantages in terms of implementation cost and hit latency,
it is hardly surprising that LRU is rarely implemented. However, when it comes to pre-
dictable performance, LRU outperforms its competitors, as we will demonstrate. Even
smaller, and thus cheaper to implement LRU-controlled caches might provide better
performance guarantees, than their larger, FIFO, MRU, or PLRU-controlled cousins.

3Note, that the contents of the cache lines are not actually moved around. Instead, the status bits
record information about the order of the cache lines.

29

CHAPTER 2. CACHES

〈b, b〉, 〈b, c, d〉, s, t ∈ S = M∗ the set of finite access sequences
〈b, c, d〉, s, t ∈ S 6= ⊂ S; the set of finite access sequences

with pairwise different accesses

◦ : S × S → S concatenation of access sequences

Figure 2.4: Access sequences.

Invalidation of Cache Lines

In a multiprocessor or multicore environment, processes running on different processors
or cores may share memory. Several versions of a shared datum may reside in the private
caches of different processors. To ensure that changes made in one process will become
visible to other processes, a cache coherence protocol [Jacob et al., 2007] is employed.
There are different coherence protocols, but in all of them a cache line may be invalidated
in one private cache if the datum stored in the cache line is modified by another process
on another processor/core. This way arbitrary lines may be invalidated. Even the most-
recently-used line may be invalid. In the following, we assume that invalid/empty4 lines
are uniformly treated like valid lines in LRU, FIFO, and MRU, as we did not find
documentation of other treatments. It depends on the particular implementation of a
replacement policy how such lines are dealt with. It would be reasonable to replace a
more-recently-used but invalid line before replacing a less-recently-used but valid line.
The PLRU implementation found in the PowerPC 75x series [Freescale Semiconductor
Inc., 2002], exhibits a documented non-uniform treatment of invalid lines, which we take
into account. On a cache miss, invalid lines are chosen before regarding the tree bits.
Current hard real-time embedded systems do not use multicore processors, so the treat-
ment of invalid lines is irrelevant. However, future embedded systems are expected to
do so. Then, the treatment of invalid lines will matter, and some of our analyses in the
following chapters might have to be adapted to the particular implementations of the
policies with respect to invalid lines.

2.2.9 Additional Domains and Notations

Earlier, we have introduced the tuple representation of cache sets, which was used in
the explanation of the replacement policies. In the following chapters, we will need
additional domains and notations to reason about access sequences and their effect on
replacement policies.
Figure 2.4 introduces domains and metavariables for access sequences . We denote the set
of access sequences by S. Individual access sequences are written like this: 〈b, c, d〉, where
accesses occur from left to right. Sometimes we restrict our attention to access sequences
that contain pairwise different accesses only. The set of such sequences is denoted by S 6=.
Access sequences can be concatenated by ◦, as in 〈b, c, d〉◦〈f, d, a〉 = 〈b, c, d, f, d, a〉 6∈ S 6=.

4We use the terms interchangeably.

30

2.2. REPLACEMENT POLICIES

CCP : CP → P(M) function computing the contents of cache-set state
SC : S → P(M) function computing the contents of an access sequence

Figure 2.5: Extracting the contents of cache-set states and access sequences.

updateP : CP × S → CP function computing the effect of an access sequence
on a cache-set state under policy P

mP : CP × S → N the number of misses incurred by policy P
on a given access sequence and cache-set state.

hP : CP × S → N the number of hits of policy P
on a given access sequence and cache-set state.

Figure 2.6: Functions modeling cache replacement policies

Sometimes we are only interested in which memory blocks are contained in a cache set or
an access sequence but not in their order. Figure 2.5 introduces functions to extract the
contents of cache-set states and sequences. The function CCP : CP → P(M) returns the
“cache contents” of a cache set. For example, CCLRU(4)([b, e, c, f]LRU(4)) = {b, c, e, f}.
The initial cache-set state iP of a policy, that the cache assumes at startup of the
hardware, is empty:

CCP (iP) = ∅

Similarly, SC : S → P(M) computes the contents of a given access sequence. For
example, SC(〈d, b, a, f, a〉) = {a, b, d, f}.
Cache replacement policies change a cache set’s state upon memory accesses. We have
previously introduced updateP which models the behavior of policy P . updateP can be
lifted from individual memory blocks to sequences of memory blocks:

updateP (q, 〈〉) := q

updateP (q, 〈b1, . . . , bn〉) := updateP (updateP (q, b1), 〈b2, . . . , bn〉)

For instance, updateFIFO(4)([b, e, d, f]FIFO(4), 〈f, c〉) = updateFIFO(4)([b, e, d, f]FIFO(4), 〈c〉)
= [c, b, e, d]FIFO(4). In contrast, updateLRU(4)([b, e, d, f]LRU(4), 〈f, c〉)
= updateLRU(4)([f, b, e, d]LRU(4), 〈c〉) = [c, f, b, e]LRU(4). The lifted updateP -functions
allow us to express that cache-set states are reachable from the initial state:

∀q ∈ CP : ∃s ∈ S : q = updateP (iP , s)

Functions modeling cache replacement policies are introduced in Figure 2.6. updateP (q, s)
has been introduced before. mP (q, s) and hP (q, s) compute the number of of misses and
hits, respectively, of policy P starting in state q processing access sequence s. For
instance, mLRU(4)([b, e, d, f]LRU(4), 〈f, c, f〉) = 1. In contrast, as the second access to f
results in a miss, mFIFO(4)([b, e, d, f]FIFO(4), 〈f, c, f〉) = 2.

31

CHAPTER 2. CACHES

mP can be defined in terms of updateP and CCP :

mP (q, 〈〉) := 0

mP (q, 〈b〉) :=

{
1 if b 6∈ CCP (q) “miss”
0 if b ∈ CCP (q) “hit”

mP (q, 〈b1, . . . , bn〉) := mP (q, 〈b1〉) +mP (updateP (q, 〈b1〉), 〈b2, . . . , bn〉)

As each access is either a hit or a miss, hP (q, s) = |s| −mP (q, s), where |s| denotes the
length of the access sequence s.

32

3
Abstract Interpretation

Abstract interpretation [Cousot and Cousot, 1976,Cousot and Cousot, 1977] is a theory
of sound semantics-based program analyses. Properties of the concrete semantics of a
computer system are usually undecidable. For instance, it is in general undecidable
whether a memory access will cause a cache hit or a cache miss. Therefore, one is forced
to approximate the system’s semantics. Such an approximation should be sound such
that only true properties can be derived from it. Abstract interpretation provides a
theory of deriving such sound approximations.
In this chapter, we describe some of the basics of abstract interpretation and data-flow
analysis, which predates abstract interpretation. Mathematical foundations, like partial
orders, complete lattices, fixed points, and chains, are introduced in Appendix C. In
Chapter 4, we present a state-of-the-art cache analysis based on abstract interpretation.

3.1 Collecting Semantics

In order to develop a notion of sound approximation we first need to introduce a concrete
semantics. Programs may start their execution in a set of initial states. For instance,
the initial valuation of variables and the state of the cache may vary. To be able to
take all possible initial states into account, the concrete semantics which operates on
individual concrete states is lifted to a collecting semantics which operates on sets of
concrete states. Based on a collecting path semantics we will go on to define the sticky
collecting semantics, which maps each program point to the set of concrete states that
may arise at that program point during program execution. We define these different
semantics for programs represented by control-flow graphs:

Definition 3.1 (Control-flow graph, path).
A program P may be represented by a control-flow graph G = (V,E, i), where
• the nodes V represent program statements,

• the edges E ⊆ V × V represent possible control-flow, and

• i ∈ V represents the start node, which has no incoming edges: ¬∃v ∈ V : (v, i) ∈ E.
A sequence (v1, . . ., vn) ∈ V ∗ is a path through a control-flow graph G = (V,E, i) iff
v1 = i and ∀j ∈ {1, . . . , n − 1} : (vj, vj+1) ∈ E. A sequence (v1, . . ., vn) ∈ V ∗ is a path
to v if it is a path and (vn, v) ∈ E.

33

CHAPTER 3. ABSTRACT INTERPRETATION

Given a concrete transformer f : V → Dconc → Dconc that computes the effect of a
program statement v ∈ V on a concrete state s ∈ Dconc, one can define the semantics
JπKconc : Dconc → Dconc of a path π = (v1, . . . , vn) ∈ V ∗ through the control-flow graph:
Definition 3.2 (Path semantics).

JπKconc :=

{
λx.x if π is the empty path
J(v2, . . . , vn)Kconc ◦ f(v1) if π = (v1, . . . , vn)

Program analyses shall usually determine properties for sets of initial states. Path
semantics can be lifted from individual concrete states s ∈ Dconc to sets of concrete
states Scoll ∈ Dcoll = P(Dconc) by first lifting the concrete transformer f to a collecting
transformer fcoll : V → Dcoll → Dcoll on sets of concrete states:

fcoll(v)(Scoll) := {f(v)(s) | s ∈ Scoll}
Note that the partially ordered set (P(M),⊆) is a complete lattice for any set M , see
Appendix C. In particular, (Dcoll = P(Dconc),⊆,

⋃
,
⋂
,∅,Dconc) is a complete lattice

independently of the concrete domain Dconc. The partial order ⊆ orders states with
respect to their precision: if A ⊆ B ∈ Dcoll, then A is more precise than B, it represents
fewer concrete states. Also, the collecting transformer fcoll is monotone by construction:
given more precise information as input it computes more precise output.
JπKconc can similarly be lifted to sets of concrete states using fcoll:
Definition 3.3 (Collecting path semantics).

JπKcoll :=

{
λx.x if π is the empty path
J(v2, . . . , vn)Kcoll ◦ fcoll(v1) if π = (v1, . . . , vn)

Program analyses often determine properties of the sticky collecting semantics. Does a
variable assume a constant value at a particular program point? Is the memory access
associated with a particular program point always a cache hit? The sticky collecting
semantics CollP : V → Dcoll maps a program point to the set of concrete states that
may arise at that point in the program:
Definition 3.4 (Sticky collecting semantics).
The sticky collecting semantics CollP : V → Dcoll of a program P , represented by
control-flow graph GP , on a set of concrete initial states Init ⊆ Dconc is

CollP (v) :=
⋃
{JπKcoll(Init) | π is a path to v in GP}.

Other properties may need different concrete semantics. The liveness of a variable cannot
be expressed in terms of the sticky collecting semantics. It needs a trace semantics. We
do not go into detail about other semantics as the sticky collecting semantics suffices for
cache analysis.
The sticky collecting semantics is usually not computable. The set of concrete initial
states is often infinitely large or finite but prohibitively large. Furthermore, the definition
quantifies over all paths through the control-flow graph which may as well be infinitely
many due to loops. To address the former problem, one can replace the concrete domain
by a more abstract one, that makes analysis feasible, usually at the cost of precision.

34

3.2. ABSTRACT SEMANTICS

3.2 Abstract Semantics

Abstract interpretation is a general framework for soundly approximating semantics
[Cousot and Cousot, 1976]. In this section, we discuss the abstraction of a sticky col-
lecting semantics and argue about correctness conditions.
Sets of concrete states in Dcoll = P(Dconc) can be described by elements of an abstract
domain Dabs = (Dabs,v). As in the collecting semantics, the partial order v can be
interpreted as “more precise than”, i.e., if a v b, than a denotes more precise analysis
information than b. The abstract domain Dabs should be a complete lattice so that
least upper bounds exist for all subsets of Dabs such that we can always safely and
uniquely combine analysis information. Analogously to the concrete semantics, we need
a monotone abstract transformer fabs : V → Dabs → Dabs to compute the effect of
program statements.
The abstract analogue to the collecting path semantics can be defined using this abstract
transformer fabs:

Definition 3.5 (Abstract collecting path semantics).

JπKabs :=

{
λx.x if π is the empty path
J(v2, . . . , vn)Kabs ◦ fabs(v1) if π = (v1, . . . , vn)

We would like the abstract collecting path semantics to be sound with respect to the
collecting path semantics. To argue about the correctness of the abstract transformer
and the induced abstract semantics, we need to relate the abstract with the concrete
domain. One of several possibilities of doing so, is to define a monotone concretization
function γ : Dabs → Dcoll that maps each abstract state to a set of concrete states which
it represents. The monotonicity of γ ensures that the partial order v on Dabs indeed
orders abstract states by their precision. The concretization of an abstract state will
be a superset of the concretization of a more precise abstract state, i.e., a v b implies
γ(a) ⊆ γ(b). The following diagram illustrates what it means for fabs to be locally
consistent with fcoll:

· ·fcoll(v)

·

γ

·fabs(v)

·
γ

⊆

Definition 3.6 (Local consistency).
An abstract transformer fabs is locally consistent with a collecting transformer fcoll, if

∀v ∈ V, Sabs ∈ Dabs : fcoll(v)(γ(Sabs)) ⊆ γ(fabs(v)(Sabs))

35

CHAPTER 3. ABSTRACT INTERPRETATION

·
·

·

v

γ

α

·
·

·

≤

α

γ

(L,≤) (M,v)

Figure 3.1: Galois connection (L,≤) −−→←−−α
γ

(M,v).

Thus, fabs should overapproximate the behavior of fcoll. Applying fabs to an abstract
state Sabs that represents the set of states γ(Sabs) in the concrete domain should yield
an abstract state that includes fcoll(γ(Sabs)).
Often one can also define a monotone abstraction function α : Dcoll → Dabs that com-
putes the best abstract description of a set of concrete states. The abstraction function
α and the concretization function γ should form a Galois connection:

Definition 3.7 (Galois connection).
Let (L, ≤) and (M , v) be partially ordered sets and α ∈ L→M , γ ∈M → L. We call
(L,≤) −−−→←−−−α

γ
(M,v) a Galois connection if α and γ are monotone functions and

l ≤ γ(α(l))

α(γ(m)) v m

for all l ∈ L and m ∈M .

This relation is also illustrated in Figure 3.1.
Intuitively, the first condition ensures that by abstracting and concretizing one can only
lose precision, which is necessary for soundness. Losing some precision is usually also
unavoidable, as the abstract domain is smaller than the concrete domain and thus cannot
distinguish certain concrete states. The second condition ensures that the abstraction
function α computes precise approximations of concrete states. However, if α(γ(x)) v x,
then there are two abstract states that represent the same set of concrete states which
is undesirable. Therefore, the condition is often strengthened to α(γ(m)) = m. In that
case α and γ form a Galois insertion.
Given a Galois connection (Dcoll, ⊆) −−→←−−α

γ
(Dabs, v) one can define the best abstract

transformer fbest = α ◦ fcoll ◦ γ:

36

3.2. ABSTRACT SEMANTICS

· ·fbest

·

γ

·

α

fcoll

The local consistency of fbest is easily verified. It is also the best abstract transformer
in the sense that it will compute the most precise results in the given abstract domain.
Usually it is not feasible to compute fbest by actually concretizing, transforming, and
abstracting: concretizing may be too costly or impossible depending on the size of the
concrete domain. However, it is often possible to compute fbest without explicitly leaving
the abstract domain.
Local consistency guarantees soundness:

Lemma 3.8 (Soundness of abstract collecting path semantics).
The abstract collecting path semantics is a sound overapproximation of the collecting path
semantics, i.e., ∀x ∈ Dabs : (JπKcoll ◦ γ)(x) ⊆ (γ ◦ JπKabs)(x) if fabs is locally consistent.

Proof. Proof by induction over the length of π: For the empty path, the theorem is
trivially true. For the induction step, we need to show that ∀x ∈ Dabs : J(v1) ◦ πKcoll ◦
γ(x) ⊆ γ ◦ J(v1) ◦ πKabs(x) provided ∀x ∈ Dabs : JπKcoll ◦ γ(x) ⊆ γ ◦ JπKabs(x):

J(v1) ◦ πKcoll ◦ γ(x)
Def.
= JπKcoll ◦ fcoll(v1) ◦ γ(x)

Local consistency and monotonicity
⊆ JπKcoll ◦ γ ◦ fabs(v1)(x)

Induction hypothesis
⊆ γ ◦ JπKabs ◦ fabs(v1)(x)
Def.
= γ ◦ J(v1) ◦ πKabs(x)

The proof is illustrated by the following diagram:

· ·JπKcoll

Induction hypothesis

·

γ

·JπKabs

·

γ

⊆

·fabs

·fcoll

Local consistency

·fcoll ⊆

·
γ

⊆

Using the abstract collecting path semantics we can also define the abstract version of
the sticky collecting semantics:

37

CHAPTER 3. ABSTRACT INTERPRETATION

Definition 3.9 (Abstract sticky collecting semantics).
The abstract sticky collecting semantics of a program P , represented by control-flow
graph GP , on an abstract initial state Initabs is

AbsP (v) :=
⊔
{JπKabs(Initabs) | π is a path from i to v in GP}.

In order to use the abstract sticky collecting semantics or an approximation of it to infer
properties of the collecting semantics, the abstract sticky collecting semantics should be
sound:

Theorem 3.10 (Soundness of abstract sticky collecting semantics).
The abstract sticky collecting semantics is a sound overapproximation of the sticky col-
lecting semantics, i.e., ∀v ∈ V : CollP (v) ⊆ γ(AbsP (v)) if fabs is locally consistent
and the abstract initial state is the abstraction of the set of concrete initial states, i.e.,
Initabs = α(Init).

Proof. Due to Lemma 3.8, ∀π : γ(JπKabs(Initabs)) ⊇ JπKcoll(γ(Initabs)). Since J·Kcoll is
monotone, γ(Initabs) = γ(α(Init)) ⊇ Init, and⊇ is transitive, also ∀π : γ(JπKabs(α(Init)))
⊇ JπKcoll(Init). Given this and the monotonicity of γ we can prove:

CollP (v)
Def.
=

⋃ {JπKcoll(Init) | π is a path from i to v in GP}
⊆ ⋃ {γ(JπKabs(α(Init))) | π is a path from i to v in GP}

Monotonicity of γ
⊆ γ(

⊔ {JπKabs(α(Init)) | π is a path from i to v in GP})
Def.
= γ(AbsP (v))

3.3 Data-Flow Analysis, MFP vs MOP

Data-flow analysis [Kildall, 1973, Kam and Ullman, 1977] predates abstract interpre-
tation. It does not have an inherent notion of correctness with respect to a concrete
semantics. Given abstract transformers over a complete lattice it allows to approximate
the abstract sticky collecting semantics AbsP of a program P . Abstract interpretation
provides semantics-based soundness to data-flow analyses; however, the applicability of
abstract interpretation is not limited to data-flow analyses.
AbsP is known as the “meet over all paths” solution (MOPP) in data-flow analysis.
Following this custom we will denote it by MOPP from now on. This nomenclature
is somewhat confusing as our definition joins the semantics of all paths. According
to [Nielson et al., 1999], this is for historic reasons: classical literature tends to focus on
analyses where

⊔
is
⋂
.

38

3.4. PROPERTIES AND UNCERTAINTY

The definition of the MOP solution does not provide an obvious way of computing
it. In the presence of loops, enumerating all paths and computing their semantics is
impossible. It turns out that the MOP solution is not computable in general [Kam
and Ullman, 1977]. However, under certain circumstances it is possible to compute the
maximal fixed point solution (MFP). The MFP solution is always a safe approximation
of the MOP solution. For an important class of problems it even coincides with MOP :

Definition 3.11 (Maximal fixed point solution, MFP).
The maximal fixed point solution MFPP (GP , Initabs, fabs) : VP → Dabs of a data-flow
problem defined by a control-flow graph GP = (VP , EP , iP), a complete lattice Dabs, an
abstract initial state Initabs, and monotone abstract transformer fabs : VP → Dabs → Dabs
is the least fixed point lfp(FP) of the functional FP : (VP → Dabs)→ (VP → Dabs)

FP (f)(v) :=

{
α(Initabs) if v = iP⊔{fabs(v′)(f(v′)) | (v′, v) ∈ EP} otherwise

TheMFP solution is not called minimal fixed point solution for the same historic reasons
as in the case of the MOP solution. The MFP solution safely approximates the MOP
solution:

Theorem 3.12 (MFP vs MOP).
The maximal fixed point solution MFPP ≡ lfp(FP) is a safe approximation of the “meet
over all paths” solution MOPP ≡ AbsP :

∀v ∈ VP : MOP(v) v MFPF (v)

If all transfer functions fabs(v) are distributive, the two solutions coincide:

∀v ∈ VP : MOP(v) = MFPF (v)

Proof. See [Nielson et al., 1999]. Intuitively, distributivity allows to join intermediate
results in the MFP solution without losing any precision.

Least fixed points of a function f : A → A can be computed by Kleene’s fixed point
iteration if the underlying domain A satisfies the ascending chain condition, see Theo-
rem C.11. According to Lemma C.10, the total function space between S and L, S → L
satisfies the ascending chain condition if S is a finite set and L satisfies the ascending
chain condition. The lfp(FP) can thus be computed by Kleene’s fixed point iteration if
the abstract domain Dabs satisfies the ascending chain condition as VP is always finite.

3.4 Properties and Uncertainty

Ultimately, we are interested in computing properties of the sticky collecting semantics.
We would like to know whether some predicate ϕ ⊆ Dconc holds in all concrete states
CollP (v) that reach program point v. As we can only compute the MFP solution on

39

CHAPTER 3. ABSTRACT INTERPRETATION

an abstract domain, we cannot always decide whether ϕ is satisfied by all reachable
concrete states or not. The relation between CollP (v) and MFPP (v) is as follows:

CollP (v) ⊆ γ(MOPP (v)) ⊆ γ(MFPP (v))

If we find out that γ(MFPP (v)) ⊆ ϕ, we also know that the property holds in all concrete
states: CollP (v) ⊆ ϕ. However, the converse does not hold γ(MFPP (v)) 6⊆ ϕ does not
imply CollP (v) 6⊆ ϕ. To prove that ϕ does not hold we can check whether ¬ϕ holds, i.e.,
whether γ(MFPP (v)) ⊆ Dconc \ ϕ = ¬ϕ. For some properties neither γ(MFPP (v)) ⊆ ϕ
nor γ(MFPP (v)) ⊆ Dconc \ ϕ hold and we do not know whether the property holds or
not. This is the standard view of the situation:

ϕ holds ϕ does not hold

ϕ holds, but
analysis cannot
prove it

ϕ does not hold,
but analysis
cannot prove it

In many application areas the goal is to either prove that a property is satisfied by
all concrete states or to prove that it is satisfied by no concrete state at a particular
program point. An example in our application area is that of classifying memory accesses
associated with instructions in the program as cache hits or cache misses. One can
distinguish three cases if the analysis can neither prove ϕ (classify the memory access
as a cache hit) nor ¬ϕ (classify it as a cache miss):

ϕ holds ¬ϕ holds

ϕ holds, but
analysis cannot
prove it

¬ϕ holds, but
analysis cannot
prove it

Neither
ϕ nor
¬ϕ holds

40

3.4. PROPERTIES AND UNCERTAINTY

Either this is because neither ϕ nor ¬ϕ holds or because of the imprecision of the
analysis. In our cache example, some of the states in CollP (v) result in a cache miss
whereas others result in a cache hit: the memory access can neither be classified as a
definite hit nor as a definite miss. Such uncertainty is inherent to the sticky collecting
semantics.

Imprecision due to abstraction
Imprecision due to the abstraction can have two reasons:
1. The abstract domain is inadequate:
• The domain should be able to express properties of interest: If one is for instance

interested in whether a program variable is even or odd, an analysis that records
the sign of the variable is inadequate. Even if one obtains precise information in
this domain, one cannot decide whether a variable is even or odd.

• The domain should be strong enough to maintain or infer interesting invariants:
A cache domain that simply remembers whether a memory block is contained in
the cache or not but does not maintain additional information to maintain such
information will be weak. Upon a single memory access it will lose all information
about its contents. Any of the memory blocks could be evicted by that access.

2. The abstract transformer is not precise. Provided a Galois connection between
the concrete and the abstract domain, the best abstract transformer can be defined.
However, sometimes it is not efficiently computable, and one has to settle with a sound
but not the best abstract transformer.

Uncertainty inherent to the sticky collecting semantics
As an example of uncertainty inherent to the collecting semantics consider the following
example program:

Example.
while (100/x > 5)

x := x + 1;

If variable x can initially take any value, evaluating 100/x may cause a division-by-zero
exception. The collecting semantics at that program point reflects this, the predicate
ϕ := x 6= 0 does not hold, neither does ¬ϕ. A compiler would have to introduce code
that checks whether x is zero or not to generate safe code. However, from the second
iteration of the loop on, evaluating 100/x is safe, since x must be greater than zero. For
all iterations but the first, the safety check is thus superfluous. Given this knowledge a
compiler might decide to unroll the loop once to save the superfluous checks.
To distinguish the two cases in a preceding analysis, one needs to introduce context,
i.e., information about how control reached this point. Formally, the sticky collecting
semantics can be made context-sensitive in the following way: The context-sensitive
sticky collecting semantics refines the sticky collecting semantics by mapping a program
point and a context c ∈ C to the set of concrete states that may arise at that point in
the program under that context:

41

CHAPTER 3. ABSTRACT INTERPRETATION

Definition 3.13 (Context-sensitive sticky collecting semantics). The context-sensitive
sticky collecting semantics CSCollP : V × C → Dcoll of a program P , represented by
control-flow graph GP , on a set of concrete initial states Init ⊆ Dconc is

CSCollP (v, c) :=
⋃
{JπKcoll(Init) | π is a path from i to v in GP in context c}

Abstract context-sensitive semantics can be defined analogously.
In this particular example, virtually unrolling the loop once allows the analysis to deter-
mine that only the first safety check is necessary. As we will see in the following chapter,
virtual loop unrolling is also important in cache analysis.

42

4
Cache Analysis

The goal of a cache analysis is to statically predict the cache behavior of a program on
a set of inputs with a possibly unknown initial cache state. As the cache behavior may
vary from input to input and from one initial state to another, it may not be possible to
safely classify each memory access in the program as a hit or a miss. A cache analysis
is therefore forced to approximate the cache behavior in a conservative way if it shall be
used to provide guarantees on the execution time of a task.
To obtain tight bounds on the execution time of a program it is essential to use a
precise cache analysis. Each excluded cache miss improves the provable upper bound
on the worst-case execution time roughly by the cache miss penalty1. Conversely, each
guaranteed cache miss improves the provable lower bound on the best-case execution
time. Due to the high cache miss penalty, it is not an option to simply assume cache
misses everywhere:

At the Ada Deutschland conference, Alfred Roßkopf of EADS presented
results showing that a PowerPC 604 running at 300 MHz with caches disabled
[. . .] delivers a similar performance on some benchmarks as a Motorola 68020
running at 20 MHz, while the PowerPC outperforms the 68020 by a factor
of 20 with caching enabled. [Langenbach et al., 2002]

By now, typical cache miss penalty are even larger than they were in 2002. A timing
analysis without any cache analysis would thus yield extremely pessimistic guarantees
for a processor with caches. Many task sets would be rendered unschedulable by the
analysis, although, in reality they would be perfectly schedulable.

What should a cache analysis determine?

WCET and BCET analyses need a classification of individual memory accesses in the
program as hits or misses. For most architectures it is not sufficient to determine upper
or lower bounds on the number of misses, respectively, for the execution of the entire
program. This is because caches interact with other microarchitectural features like
pipelines. For instance, the cache miss penalty may overlap with pipeline stalls. To
precisely take such effects into account, a timing analysis needs to know where and when

1Part of the penalty may overlap with pipeline stalls.

43

CHAPTER 4. CACHE ANALYSIS

the cache misses happen. Cache analyses for BCET and WCET have been proposed
in [Li et al., 1996,White et al., 1997,Ferdinand, 1997,Ferdinand et al., 1997,Ferdinand
and Wilhelm, 1999,Ramaprasad and Mueller, 2005,Sen and Srikant, 2007].
Another area of application for cache analyses are compiler optimizations. Loops that
operate on large arrays have a large impact on the execution time. There is great po-
tential of performance improvement by changing the data layout of the arrays and by
changing the structure of the loops accordingly. Popular optimizations include inter-
/intra-array padding, blocking, and loop fusion. Cache analyses that provide tight
bounds on the number of misses of loop nests can aid the compiler in choosing appropri-
ate parameters for these optimizations. Work in this area has been described in [Ghosh
et al., 1997,Ghosh et al., 1998,Fraguela et al., 1999,Ghosh et al., 1999,Bermudo et al.,
2000,Chatterjee et al., 2001].
How do analyses for these two applications differ? Cache analyses used in compiler
optimizations are not aimed at providing precise guarantees on the execution time.
They solely provide upper bounds on the number of cache misses. This is a good
enough indicator of the resulting execution time for compiler optimization purposes. In
contrast, as explained earlier, WCET analyses usually need a classification of individual
memory references in the program as hits or misses.
The focus of this work is on cache analysis for WCET and BCET analysis, i.e., analyses
that classify individual memory accesses as cache hits or cache misses. In the following
we will therefore focus on such analyses and the difficulties that arise in that area.
However, some of our results in the following chapters also apply to cache analyses that
compute global bounds on the number of cache hits and misses.

What are the constituents of a cache analysis?

In order to answer the question of whether a certain memory reference in the program
will cause a hit or a miss, an analysis needs to answer the following subquestions:
• Which memory block is being accessed? For instruction fetches this question

is easy to answer. For data accesses, however, the answer to this question is in
general not computable. In addition, static memory references often result in
accesses to different memory addresses dynamically. As an example, consider array
accesses within loops. An analysis has to compute safe approximations of the set
of memory addresses that are accessed by a memory reference. Such analyses are
called value or address analysis and can be formalized by abstract interpretation.
Abstract domains used for address analysis include interval domains [Ferdinand
et al., 1999] and circular linear progressions [Sen and Srikant, 2007].

• Is the accessed memory block contained in the cache? Once the accessed
memory address or some overapproximation of the possible memory addresses is
calculated, it remains to determine whether this address or set of addresses is
cached. Often, this part alone is called cache analysis. Our focus will be solely on
this problem. To answer the question, the cache analysis needs to compute a safe

44

address
analysis

write
z

read
y

read
x

mul
x, y

x?

cache
analysis

don't
knowhit miss

 x ∈ {0x30...,0x37...}

Figure 4.1: Classification of memory references.

approximation of the cache contents before the memory access, i.e., the “collecting
cache semantics”. This can then be queried to classify the access.

Figure 4.1 illustrates the two steps involved in classifying a memory reference as a hit
or a miss. The results of the address analysis are used to compute a set of memory
addresses that overapproximates the set of memory addresses that may be accessed by
the reference. Then, the results of the cache analysis are used to classify the reference
as a hit or a miss. Due to the inaccuracy of the analysis or the fact that the reference
sometimes results in hits and sometimes in misses, i.e., uncertainty inherent to the
collecting semantics, it is not always possible to make a definite classification. Hence,
“don’t know” is a possible answer.
Of course, the address analysis and cache analysis cannot answer these questions by
looking at individual instructions in isolation. The cache contents at a program point
depend on the cache contents and memory accesses at preceding program points. The
same holds for variable values that are tracked by the address analysis. The whole
program needs to be taken into account. Different data-flow analyses [Kildall, 1973]
have been proposed for address [Ferdinand et al., 1999, Sen and Srikant, 2007] and
cache analysis [White et al., 1997,Ferdinand, 1997,Ferdinand et al., 1997,Ferdinand and
Wilhelm, 1999, Sen and Srikant, 2007]. Some [Ferdinand, 1997, Ferdinand et al., 1997,
Ferdinand andWilhelm, 1999,Sen and Srikant, 2007] are based on abstract interpretation.
Cache and address analyses cannot be performed on the source level; they must operate
on executables. The precise data layout and scheduling of instructions is usually un-
known at the source level. In that case, it is impossible to perform a cache analysis at
this level. In order to still perform a static analysis over the control-flow graph of the
program, it needs to be recovered from the binary [Theiling, 2003].

45

CHAPTER 4. CACHE ANALYSIS

4.1 May and Must Information

In static analysis there is a concept of may and must information. In alias analysis, for
instance, there aremay andmust aliases. Two access paths are in amust alias relation at
a program point if they are guaranteed to alias at that point in the program. Two access
paths are in a may alias relation at a program point if they cannot be guaranteed not to
alias at that point in the program. Corresponding to may and must alias information,
there are may and must alias analyses.
Analogously, there is a concept of may and must cache information in static cache
analysis: may and must caches are upper and lower approximations, respectively, to
the contents of all concrete caches that will occur whenever program execution reaches
a program point. So, the must cache at a program point is a set of memory blocks
that are definitely in each concrete cache at that point. The may cache is a set of
memory blocks that may be in a concrete cache whenever program execution reaches
that program point. In Section 4.2, we are presenting may and must analyses for LRU
based on abstract interpretation.
Must cache information is used to derive safe information about cache hits; in other
words it is used to exclude the “timing accident” cache miss. The complement of the
may cache information is used to safely predict cache misses. The more cache hits can
be predicted, the better the upper bound on the worst-case execution time will be. Vice
versa, predicting more cache misses will result in a better lower bound on the best-
case execution time. Observe the asymmetry between may and must : while a greater
must cache means more precise information, a greater may cache means less precise
information.
While some cache analyses explicitly maintain may and must cache information, others
do so only implicitly. Whenever a cache analysis predicts a cache miss this prediction
is based on may cache information, be it explicit or implicit. Similarly, a cache hit
prediction is always based on must cache information.

4.2 Cache Analysis by Abstract Interpretation:
Ferdinand’s LRU Analysis

As an example of a state-of-the-art abstract interpretation-based cache analysis, we
describe the LRU analysis of Christian Ferdinand [Ferdinand, 1997]. Later, in Chapter 6,
we will show how to derive cache analyses for other policies, like FIFO and PLRU, from
this or other LRU analyses. In the course of presenting the analysis we will try to point
out properties of LRU that make such an analysis precise, and discuss challenges to
cache analysis that are independent of the replacement policy.
For the sake of simplicity, we will restrict ourselves to fully-associative caches, although
processor caches are usually set-associative. Set-associative caches can be seen as collec-

46

4.2. FERDINAND’S LRU ANALYSIS

tions of many independent2 fully-associative caches. Therefore, cache analyses for the
fully-associative case trivially translate to analyses for set-associative caches.

Concrete Cache Semantics

In sections 2.2.1 and 2.2.9, we introduced cache domains and functions modeling the
replacement policies’ semantics. Recall that we denote the set of memory blocks by
M . The set of access sequences 〈b, b〉, 〈b, c, d〉, . . . is denoted by S = M∗. We denote
the set of reachable cache-set states of policy P by CP . We use k-tuples of memory
blocks to represent cache-sets of associativity k, i.e., CLRU(k) ⊆Mk

⊥. For LRU, memory
blocks are ordered from most- to least-recently-used from left to right. In [b, e, d, f]LRU,
b is the most-recently-used element and f the least-recently-used one. The function
updateP (q, s) : CP × S → CP computes the cache-set state after accessing a sequence s
in state q under policy P . For instance, updateLRU([b, e, d, f]LRU, 〈f, c〉) = [c, f, b, e]LRU.
To define the concrete transformer fLRU : V → CLRU → CLRU, which computes the
effect of program statements in V on the state of the cache, we need a function ι : V → S
that maps a program statement v ∈ V to the sequence of memory blocks s ∈ S = M∗

that is accessed by v. In the case of an instruction cache analysis, ι is easily obtained.
For data caches, the memory blocks that are being accessed depend on the state of the
system. We only consider instruction caches here, as we do not want to consider the
address analysis problem. Given ι, the concrete transformer is defined as follows:

fLRU(v)([a1, . . . , ak]LRU) := updateLRU([a1, . . . , ak]LRU, ι(v))

The concrete transformer can be lifted to a collecting transformer fLRU
coll as described

in Chapter 3. fLRU
coll induces a collecting path semantics and finally the sticky collecting

semantics, which can be queried to classify memory accesses as cache hits or cache
misses.

Abstract Cache Semantics

The sticky collecting semantics is not computable. It has to be approximated by the
maximal fixed point solution in an abstract domain as described in Chapter 3.
Christian Ferdinand introduces two analyses for LRU:
• A may analysis, which computes a set of memory blocks that may be in the cache

at a program point. May analysis results can be used to predict cache misses,
namely for those memory blocks that may not be in the cache.

• A must analysis, which computes a set of memory blocks that must be in the cache
at a program point. Must analysis results can be used to predict cache hits.

2All of the policies presented in this dissertation except Pseudo-RR treat each cache set indepen-
dently.

47

CHAPTER 4. CACHE ANALYSIS

Recall the notion of age introduced in Section 2.2.3. Both analyses approximate the
age of memory blocks: The may analysis approximates ages from below, while the
must analysis approximates the memory blocks’ ages from above.
Both abstract domainsALRU

must, ALRU
may can be modeled as function spaces in which memory

blocks are mapped to approximations of their ages:

ALRU
must = ALRU

may = M → {0, . . . , k − 1,∞}
Abstract states can be compactly represented by only explicitly storing a memory block’s
age if it is not∞. In the must analysis at most k elements satisfy this constraint at any
point in time. In the may analysis more complicated representations are required for
efficiency, which we do not want to elaborate on here. To compactly represent abstract
states textually, we rely on the isomorphic representation by k-tuples of sets of memory
blocks, as in p̂ = [{a, b}, {f}, {d}, {e, g}], where k = 4. Memory blocks that map to
i in the function representation are contained in the (i + 1)th component of the tuple.
Memory blocks that map to ∞ are not contained in any of the tuple’s sets. In our
example state, p̂ (a) = p̂ (b) = 0, p̂ (f) = 1, p̂ (d) = 2, p̂ (e) = p̂ (g) = 3, and p̂ (x) = ∞
for all other memory blocks.
While the domains are the same for may and must, the interpretations of abstract
states are different. To concisely define both concretization functions γLRU

must : ALRU
must →

P(CLRU) and γLRU
may : ALRU

may → P(CLRU), we need to define the helper function age :
CLRU ×M → N that computes the age of a memory block in a cache set:

age([a0, . . . , ak−1],m) :=

{
i if ai = m
∞ otherwise

Given age, γLRU
must is easily defined:

γLRU
must (q̂) = {q ∈ CLRU | ∀m ∈M : age(q,m) ≤ q̂ (m)},

where 0 < 1 < . . . < k − 1 < ∞. I.e., a concrete state c is represented by an abstract
state q̂ if memory blocks are at most as “old” in c as they are in q̂ . In particular, if
q̂ (b) ≤ k − 1, b must be contained in a concretization of q̂ . In the may domain it is
exactly the other way around:

γLRU
may (q̂) = {q ∈ CLRU | ∀m ∈M : q̂ (m) ≤ age(q,m)},

i.e., a concrete state c is represented by an abstract state q̂ if memory blocks are at least
as “old” in c as they are in q̂ . In particular, if q̂ (b) =∞, b may not be contained in any
of the concretizations of q̂ .

Example (Concretization of abstract states).
Consider the following three abstract states p̂ , q̂ , ŝ ∈ ALRU

must:

p̂ = [{b}, {}, {a, c}, {f}] ∈ ALRU
must

q̂ = [{}, {d}, {b, c}, {a}] ∈ ALRU
must

ŝ = [{}, {d, c}, {}, {b}] ∈ ALRU
must

48

4.2. FERDINAND’S LRU ANALYSIS

In p̂ and q̂ , the contents of the cache sets are fully determined. Due to the uncertainty
about the precise ages of their contents, a finite set of concrete states is represented by
p̂ and q̂ :

γLRU
must (p̂) = {[b, a, c, f] , [b, c, a, f]}
γLRU
must (q̂) = {[d, b, c, a] , [d, c, b, a] , [b, d, c, a] , [c, d, b, a]}

In ŝ , only three of the four memory blocks that can be stored in a cache set are known.
Therefore, any other memory block might occupy the remaining cache line:

γLRU
must (ŝ) = {[d, c, b, x] , [d, c, x, b] , [c, d, b, x] , [c, d, x, b] | x ∈M⊥\{b, c, d}}

In ALRU
may , ages of memory blocks are bound from below. Consider the following two

abstract states t̂ , û ∈ ALRU
may :

t̂ = [{}, {}, {}, {a}] ∈ ALRU
may

û = [{}, {}, {a}, {b}] ∈ ALRU
may

In a cache analysis t̂ and û are not reachable. However, we chose these two abstract
states as they have very small concretizations that are easily understandable. The con-
cretization of t̂ contains only two elements:

γLRU
may (t̂) = {[⊥,⊥,⊥,⊥] , [⊥,⊥,⊥, a]}

The empty concrete state [⊥,⊥,⊥,⊥] is contained in the concretization of all abstract
states. û ’s concretization subsumes t̂ ’s concretization:

γLRU
may (û) = {[⊥,⊥,⊥,⊥] , [⊥,⊥,⊥, a] , [⊥,⊥,⊥, b] , [⊥,⊥, a,⊥] , [⊥,⊥, a, b]}.

Abstraction functions compute the best abstract description of a set of concrete states
in an abstract domain. Using age they can also be easily defined:

αLRU
must : P(CLRU)→ ALRU

must

αLRU
must(C) = λm.max

c∈C
age(c,m)

αLRU
may : P(CLRU)→ ALRU

may

αLRU
may (C) = λm.min

c∈C
age(c,m)

With the following orders vLRU
must and vLRU

may , (P(CLRU),⊆) −−−−−→←−−−−−
αLRU

must

γLRU
must

(ALRU
must,vLRU

must) and

(P(CLRU),⊆) −−−−−→←−−−−−
αLRU

may

γLRU
may

(ALRU
may ,vLRU

may) form Galois insertions. See [Ferdinand, 1997] for

a proof.

49

CHAPTER 4. CACHE ANALYSIS

The orders vLRU
must and vLRU

may are defined such that γLRU
must and γLRU

may are monotone:

p̂ vLRU
must q̂ :⇔ γLRU

must (p̂) ⊆ γLRU
must (q̂)

p̂ vLRU
may q̂ :⇔ γLRU

may (p̂) ⊆ γLRU
may (q̂)

vLRU
must andvLRU

may can be easily expressed without referring to the concretization functions:

p̂ vLRU
must q̂ :⇔ ∀m ∈M : p̂ (m) ≤ q̂ (m)

p̂ vLRU
may q̂ :⇔ ∀m ∈M : p̂ (m) ≥ q̂ (m)

Therefore, in our example on concretizations, t̂ vLRU
may û and γLRU

may (t̂) ⊆ γLRU
may (û). Both

ALRU
must and ALRU

may satisfy the ascending chain condition [Ferdinand, 1997].
The partial orders (ALRU

must,vLRU
must) and (ALRU

may ,vLRU
may) are join-semilattices so that least

upper bounds always exist. The binary join operators tLRU
must and tLRU

may induced by vLRU
must

and vLRU
may are:

p̂ tLRU
must q̂ = ŝ , where ∀m ∈M : ŝ (m) = max{ p̂ (m), q̂ (m)},

p̂ tLRU
may q̂ = ŝ , where ∀m ∈M : ŝ (m) = min{ p̂ (m), q̂ (m)},

where max and min are based on the order given before: 0 < 1 < . . . < k − 1 <∞.
The two semilattices are no complete lattices, because they lack least elements. However,
they can be augmented with least elements ⊥must and ⊥may, such that ∀ q̂ ∈ ALRU

must :
⊥must vLRU

must q̂ and ∀ q̂ ∈ ALRU
may : ⊥may vLRU

may q̂ , to form complete lattices.
In the must analysis, the abstract states maintain upper bounds on the ages of memory
blocks. To maintain this invariant, the maximum of the ages has to be taken at joins.
If an element might not be contained in one of the two states that are being joined,
i.e., p̂ (m) = ∞, it might not be contained in the join either. Therefore ŝ (m) = ∞.
Conversely, in the may analysis, the abstract states maintain lower bounds on the ages
of memory blocks. Therefore, the minimum of the ages has to be taken at joins.

Example (Loss of information at joins). In the computation of the MFP-solution, ab-
stract states have to be joined where control-flow merges. Often, this incurs a loss of
information as the abstract domain is not strong enough to precisely represent the join
of the states that are to be merged, i.e., γ(x̂)∪γ(ŷ) (γ(x̂ t ŷ). Consider p̂ , q̂ ∈ ALRU

must

as in the previous example.

p̂ tLRU
must q̂ = p̂q = [{b}, {}, {a, c}, {f}] tLRU

must [{}, {d}, {b, c}, {a}]
= [{}, {}, {b, c}, {a}]

We lose the information that either f or d must be contained in the cache by joining the
two abstract states.

γLRU
must (p̂q) = {[b, c, a, x] , [b, c, x, a] , [c, b, a, x] , [c, b, x, a] ,

[b, a, c, x] , [c, a, b, x] , [b, x, c, a] , [c, x, b, a] ,

[a, b, c, x] , [a, c, b, x] , [x, b, c, a] , [x, c, b, a] | x ∈M⊥\{a, b, c}}

50

4.2. FERDINAND’S LRU ANALYSIS

Together, the concretizations of p̂ and q̂ contain 6 states. The concretization of p̂q
contains 12 · (|M⊥| − 3) states.
Joining the may states t̂ and û of our previous example yields û = t̂ tLRU

may û as
t̂ vLRU

may û .

In designing abstract domains there is a tradeoff between precision and efficiency. In-
creasing the size of the domain may reduce the information loss through joins. There
are two extremal abstract domains:
• The power set of the concrete states. Joins simply become set unions and no loss

of information is incurred. Due to its size and the height of its chains, analyses
with such a domain are usually infeasible.

• A flat domain in which abstract states are either concrete states or >. Whenever,
two different states are joined, all information is lost. Due to the limited height
of the lattice, namely 1, analyses on this domain are very efficient. However, they
are usually also very imprecise.

The challenge is thus to find a domain somewhere in between the two extremes, that
represents a good tradeoff between the two conflicting goals of precision and efficiency.
For LRU, the presented domain has proved to be a good compromise.
It remains to define the abstract transformers fLRU

must : V → ALRU
must → ALRU

must and fLRU
may :

V → ALRU
may → ALRU

may . As in the concrete case, we define these transformers in terms of
update functions that take sequences of memory accesses as arguments:

fLRU
must (v)(q̂) := updateLRU

must(q̂ , ι(v)),

fLRU
may (v)(q̂) := updateLRU

may (q̂ , ι(v)),

where, as in the case of the concrete transformer, ι maps a program statement v ∈ V to
the memory blocks s ∈ S = M∗ that are accessed by v. Again, as in the concrete case,
update functions on sequences of memory accesses can be defined in terms of update
functions on individual memory accesses:

updateLRU
must(q̂ , ()) := q̂

updateLRU
must(q̂ , (b1, . . . , bn)) := updateLRU

must(update
LRU
must(q̂ , b1), (b2, . . . , bn))

Similarly for updateLRU
may . Finally, updateLRU

must : ALRU
must ×M → ALRU

must and updateLRU
may :

ALRU
may ×M → ALRU

may , the best abstract updates, are defined as follows:

updateLRU
must(q̂ , a) := λb.

0 if b = a (1)
q̂ (b) if q̂ (a) ≤ q̂ (b) (2)
q̂ (b) + 1 if q̂ (a) > q̂ (b) ∧ q̂ (b) < k − 1 (3)
∞ if q̂ (a) > q̂ (b) ∧ q̂ (b) ≥ k − 1 (4)

Case (1): The memory block a that is accessed assumes age 0 independently of its
previous position. This is a nice property of LRU that allows to regain information

51

CHAPTER 4. CACHE ANALYSIS

about cache states quickly. In other policies, it often depends on whether the access is a
hit or a miss, which might be unknown to the analysis, how the position of the element
is updated.
Case (2): If q̂ (a) ≤ q̂ (b), there are two possibilities in q̂ ’s concretization:

1. a is younger than b. Then b’s age is not affected by the memory access and q̂ (b)
remains a sound approximation of its age.

2. b is younger than a. Then, b must be younger than q̂ (a) and thus also younger
than q̂ (b). Accessing a ages b but not beyond q̂ (b).

Cases (3+4): If q̂ (a) > q̂ (b), then there is a state in the concretization of q̂ such that
a’s age is greater than b’s age and b’s age is q̂ (b). In that state, accessing a ages b by 1.
This evicts b from the cache if its previous age was k − 1 (Case 4). For a formal proof
of the local consistency of the abstract updates consult [Ferdinand, 1997].

Example (LRU-must-update). Assume abstract state p̂ ∈ ALRU
must as before:

p̂ = [{b}, {}, {a, c}, {f}] ∈ ALRU
must

Its concretization is {[b, a, c, f] , [b, c, a, f]}. In both states accessing c yields [c, b, a, f]
whose abstraction is [{c}, {b}, {a}, {f}]. Since updateLRU

must is the best abstract update,

updateLRU
must(p̂ , c) = [{c}, {b}, {a}, {f}] ∈ ALRU

must.

The most interesting part of the abstract update is the handling of a. Its update follows
case (2) which can be explained by the case distinction discussed above.

The ability to quickly eliminate uncertainty about cache states, as in the previous ex-
ample, is a nice property of Ferdinand’s LRU analysis. Other replacement policies do
not allow quick recovery from information loss in any abstract domain. We will study
this in depth in Chapter 5.
The update of may states is slightly different:

updateLRU
may (q̂ , a) := λb.

0 if b = a (1)
q̂ (b) if q̂ (a) < q̂ (b) (2)
q̂ (b) + 1 if q̂ (a) ≥ q̂ (b) ∧ q̂ (b) < k − 1 (3)
∞ if q̂ (a) ≥ q̂ (b) ∧ q̂ (b) ≥ k − 1 (4)

Case (1): The memory block a that is accessed assumes age 0 independently of its
previous position.
Case (2): If q̂ (a) < q̂ (b), then b’s age may be q̂ (b) and a may be younger. In that case,
accessing a does not age b and q̂ (b) may not be incremented.
Case (3): If q̂ (a) ≥ q̂ (b), there are two possibilities in q̂ ’s concretization:

1. a is younger than b. Then b does not age by accessing a, but its age must have
already been greater than q̂ (b).

2. b is younger than a. Then b ages by accessing a and q̂ (b)+1 is a valid lower bound
on its new age.

52

4.2. FERDINAND’S LRU ANALYSIS

Case (4): As in case (3). However, increasing a’s age evicts it from the may state.

Example (LRU-may update). Assume abstract state

v̂ = [{}, {}, {c}, {a, b, d}] ∈ ALRU
may .

Accessing d in this state yields

updateLRU
may (v̂ , d) = [{d}, {}, {}, {c}] ∈ ALRU

may .

The updates of a and b follow case (4) which can be explained by the case distinction
discussed above. c is updated according to case (2).

Since the two lattices ALRU
must and ALRU

may satisfy the ascending chain condition, the MFP
solution can be computed by Kleene’s fixed point iteration. It safely approximates
the MOP solution and – due to the correctness of the update functions – transitively
the sticky collecting semantics. It has been an open question whether the analysis is
distributive. In Appendix B, we give two small examples that demonstrate its non-
distributivity.

Example Analysis

To illustrate the LRU-must-analysis consider the following simple example program:

A: while (x < 10)
{

B: if (x % 2 == 0)
C: y++;

else
D: y--;
E: x++;

}

For simplicity of exposition each of the five instructions at program points A,B,C,D,E
is stored in its own separate memory block, also denoted A,B,C,D, or E, respectively.
Furthermore, we assume a fully-associative cache with five cache lines; so all instructions
map to the same single cache set.
Figure 4.2 shows the control-flow-graph of the program and the must information as-
sociated with each node the graph. At program entry we have no knowledge of the
state of the cache. Therefore, we conservatively start with the >-element of the lattice,
[{}, {}, {}, {}, {}] at entry.
In this example, the LRU-must-analysis infers as much must information for each pro-
gram point as is possible, i.e., the abstract cache state associated with each program
point is precisely the abstraction of the collecting semantics. However, no cache hits
can be predicted using the analysis results: In the first iteration of the loop, all memory

53

CHAPTER 4. CACHE ANALYSIS

entry

A
[{}, {}, {}, {}, {}] =

[{}, {}, {}, {}, {}]
tLRU
must f

LRU
must (E)([{}, {B}, {A}, {}, {}])

exit

B
[{A}, {}, {}, {}, {}] =
fLRU
must (A)([{}, {}, {}, {}, {}]))

C
[{B}, {A}, {}, {}, {}] =
fLRU
must (B)([{A}, {}, {}, {}, {}])) D

[{B}, {A}, {}, {}, {}] =
fLRU
must (B)([{A}, {}, {}, {}, {}]))

E
[{}, {B}, {A}, {}, {}] =

fLRU
must (C)([{B}, {A}, {}, {}, {}])

tLRU
must f

LRU
must (D)([{B}, {A}, {}, {}, {}])

Figure 4.2: Analysis results on example program.

accesses might miss the cache. This is an example of uncertainty inherent to the collect-
ing semantics as discussed in Section 3.4. As discussed there, one needs to introduce
context, i.e., information about how control reached a program point, to overcome this
problem. In this particular example, virtually unrolling the loop once, i.e., distinguish-
ing the first iteration from subsequent iterations, allows the analysis to determine that
only the first memory accesses to A,B, and E might miss the cache.
Figure 4.3 illustrates the effect of virtually unrolling the loop once. Nodes with thick
borders reflect that the associated instruction access can be predicted to be a cache hit.
Starting with the second iteration of the loop, three of the four instruction accesses of an
iteration are predicted to hit the cache. On the other hand, the analysis is still not able
to predict hits for accesses to C and D. In any concrete execution of the loop, only the
first accesses to C and D will result in misses. By distinguishing the first executions of
C and D from following executions, the analysis could thus become even more precise.
However, there is a price to pay: increasing the context-sensitivity of the analysis also
increases its runtime and space consumption.

54

4.2. FERDINAND’S LRU ANALYSIS

entry

A [{}, {}, {}, {}, {}]exit

B [{A}, {}, {}, {}, {}]

C[{B}, {A}, {}, {}, {}] D [{B}, {A}, {}, {}, {}]

E [{}, {B}, {A}, {}, {}]

A’ [{E}, {}, {B}, {A}, {}]exit

B’ [{A}, {E}, {}, {B}, {}]

C’[{B}, {A}, {E}, {}, {}] D’ [{B}, {A}, {E}, {}, {}]

E’ [{}, {B}, {A}, {E}, {}]

Figure 4.3: Analysis results after virtually unrolling the loop once.

55

CHAPTER 4. CACHE ANALYSIS

4.3 Other Approaches

There have been a number of other approaches to cache analysis. As noted in the
beginning of this chapter, one can distinguish between two types of cache analyses:
Cache analyses directed at WCET analysis classify individual references in the program
as hits or misses, whereas cache analyses directed at compiler optimizations compute
bounds on the number of misses for larger program fragments, like loop nests. The
following two sections describe work in the two areas, respectively.

4.3.1 Local Classification

The work closest to Ferdinand’s is that of Mueller et al. [Mueller et al., 1994,White
et al., 1997]. [Mueller et al., 1994] presents a static cache simulation for direct-mapped
instruction caches. It classifies instructions as always-miss, always-hit, first-miss, or
conflict. Always-hit, always-miss, and conflict correspond to the classifications of Fer-
dinand’s analysis. First-miss expresses that the first instruction fetch may miss but all
further accesses will be hits. This is a typical situation in the execution of loops, where
only the first iteration results in cache misses. Similar classifications are obtained in
Ferdinand’s analysis by virtual loop unrolling. Mueller et al. obtain these classifica-
tions by data-flow analyses that are not semantics-based. In subsequent work [White
et al., 1997], the analysis is extended to data caches, where the main challenges lie in
the address analysis. To address shortcomings of the classification of individual refer-
ences the analysis also computes upper bounds on the number of misses in loops. Such
a classification is, however, difficult to use in most timing analyses. Furthermore, an
instruction cache analysis for set-associative caches with LRU replacement is sketched.
As the direct-mapped analysis, it is not semantics-based and its correctness is difficult
to judge.
In [Li et al., 1996], Li, Malik, and Wolfe present an extension of their work on timing
analysis using ILP formulations, that can handle set-associative caches, data caches,
and unified caches. This work integrates pipeline, cache, and path analysis using an ILP
formulation. To address set-associative caches, their concrete semantics is encoded using
linear constraints. In theory this approach can handle any possible replacement policy.
However, due to the ILP formulation that encodes the concrete cache behavior and all
other timing-relevant aspects of a system, this approach suffers from severe complexity
problems. In practice it is limited to direct-mapped caches and simple pipelines.
In [Heckmann et al., 2003], different threats to timing predictability are discussed, among
others the use of non-LRU replacement policies. The paper introduces a must analysis
for PLRU based on Ferdinand’s must analysis for LRU. This analysis can be concisely
justified by the competitiveness of PLRU relative to LRU (see Chapter 6).

56

4.3. OTHER APPROACHES

4.3.2 Global Bounds

Ghosh, Martonosi, and Malik [Ghosh et al., 1997] introduce Cache Miss Equations
(CMEs). The data cache behavior of loop nests is characterized by Diophantine equa-
tions. Each solution of these equations corresponds to a possible cache miss. The equa-
tions provide a framework to guide code optimizations for improving cache performance.
Examples include the determination of array padding and offset amounts, and optimal
blocking factors for tiled code. The approach is more precise than previous heuristics
and potentially faster than simulation. It only applies to perfectly nested loops such
that array references are contained within the innermost loops. Conditional statements
within loops are not supported. In subsequent work [Ghosh et al., 1998,Ghosh et al.,
1999], the approach is generalized to set-associative caches with LRU replacement and
new algorithms to solve CMEs are introduced that allow to trade precision off against
analysis complexity.
A new strategy to develop probabilistic analytical models of the cache behavior is de-
scribed in [Fraguela et al., 1999]. Again, this work applies to set-associative caches
with LRU replacement and perfectly nested loops. Non-perfectly nested loops may also
be analyzed but at a possible loss of precision. Due to the probabilistic nature of the
approach no guarantees on the cache behavior can be derived.
An exact model of the cache behavior of loops nests is developed in [Chatterjee et al.,
2001] by using a non-standard classification of misses and by taking into account the
state of the cache at the end of a loop nest. It can handle imperfect loop nests by
converting them to perfect loop nests and various flavors of non-linear array layouts.
Modest levels of associativity with LRU replacement can be handled. In contrast to
previous approaches, the complexity solely relates to the static structure of the loop
nests. In particular it is independent of the loop bounds. Furthermore, exact numbers
of misses are determined instead of upper bounds as in the CME approach. Misses are
classified in a non-standard fashion into interior misses, misses that occur independently
of the context of the program fragment, and potential boundary misses, data references
that may either hit or miss, depending on the initial cache state. Due to the way
potential boundary misses are handled, the approach cannot be easily extended to other
policies.
The approach of [Ramaprasad and Mueller, 2005] is directed at WCET analysis and is
based on the CMEs approach [Ghosh et al., 1999]. In the context of WCET analysis, it
improves on the original approach in two ways: Loops are virtually fused to enable the
analysis of whole programs. To facilitate WCET analysis, the precise location of cache
misses is extracted. For each memory reference that cannot be classified by CMEs to
always hit or always miss additional analysis is performed by considering all competing
references and their positions in the iteration space. Being based on CMEs it is limited
to LRU.

57

CHAPTER 4. CACHE ANALYSIS

4.4 Challenges and Outlook

In the design of a static cache analysis for a particular replacement policy, one aims to
find an efficient and precise abstract domain, such that:
• The abstract cache states precisely and compactly represent sets of concrete cache

states.

• The best abstract transformer is cheaply computable and quickly eliminates uncer-
tainty from abstract states.

• The join operator does not lose much information.
Obviously, there is a tradeoff between precision and efficiency in all three points. A more
precise domain usually comes at the precise of a loss of efficiency.
In the following three chapters, we will present three contributions in the context of
cache analysis:

1. Even if one is willing to give up efficiency, there are limits to the attainable pre-
cision that are inherent to the underlying replacement policy. In Chapter 5, we
introduce predictability metrics that capture the influence of the replacement pol-
icy on attainable precision.

2. It has proven difficult to develop efficient cache analyses for policies other than
LRU. For instance, nomay analysis for FIFO or MRU has been known previously.
Except for [Heckmann et al., 2003], all approaches in literature either deal with
direct-mapped caches or set-associative ones with LRU replacement. In Chapter 6,
we introduce the concept of relative competitiveness, which allows to derive sound
cache analyses for a policy A from existing analyses for another policy B. One
result of studying relative competitiveness is that the LRU-may-analysis presented
in this chapter can be used as a may analysis for smaller FIFO- and MRU-
controlled caches. Other results allow to translate global bounds on the number
of hits or misses to bounds for other policies.

3. Due to the large effort involved in devising sound and precise abstract domains for
WCET analysis, recently, the use of measurement has been advocated. In Chap-
ter 7, we study the influence of the initial cache state on the cache performance.
Our analysis results suggest that measurement-based timing analysis may yield
BCET and WCET estimates that are dramatically wrong.

58

5
Predictability Metrics –
Limits on the Precision

of Static Cache Analyses

This chapter presents results about the predictability of common cache replacement
policies and mainly stems from [Reineke et al., 2007]. We introduce three metrics, evict,
fill, and mls that capture aspects of cache-state predictability. A thorough analysis
of the LRU, FIFO, MRU, and PLRU policies yields the respective values under these
metrics. To the best of our knowledge, this work presents the first quantitative, analytical
results for the predictability of replacement policies. Our results support empirical
evidence in static cache analysis.

5.1 Introduction

Embedded systems as they occur in application domains such as automotive, aeronautics,
and industrial automation often have to satisfy hard real-time constraints. Timeliness
of reactions is absolutely necessary. Offline guarantees on the worst-case execution time
of each task have to be derived using safe methods. Execution times of a task vary
depending on the task’s inputs and the initial hardware state. The vast number of
cases prohibits exhaustive testing to exactly determine the worst-case execution time.
Instead approximative methods have to be applied. Such methods must be conservative,
i.e., they must never underestimate the worst-case execution time, they must statically
overapproximate the dynamic behavior of a task on all possible inputs and hardware
states.
Caches, deep pipelines, and all kinds of speculation are increasingly used in today’s
embedded systems to improve average-case performance. A designer that introduces
such a component may find himself in the paradoxical situation that he has successfully
improved the average-case performance of the system, but fails to derive sufficient timing
guarantees despite his best efforts. This may be for two reasons: although the system’s
average-case behavior has improved, its worst-case performance has deteriorated. Even
if the worst-case performance is sufficient, the provable bound may be too imprecise due

59

CHAPTER 5. PREDICTABILITY METRICS

count

timeBCET ACET WCET upper
bound

uncertainty
×

penalty

Figure 5.1: Execution times of tasks vary depending on inputs and the initial state of the
hardware they are executed on. The figure depicts a distribution of execution
times. The border cases are known as Best- and Worst-Case Execution Time
(BCET and WCET). A correct timing analysis obtains a safe upper bound
on all possible execution times.

to low predictability of the new components. Hence, a system with good average-case,
but with poor worst-case performance or low predictability will not be certifiable. [Thiele
and Wilhelm, 2004] describes threats to the predictability of systems and proposes design
principles that support timing predictability.
The timing predictability of a system is a measure for the possibility of determining tight
bounds on execution times. As depicted in Figure 5.1, timing predictability is composed
of uncertainty and associated penalties. Uncertainty comprises timing accidents that
cannot be excluded statically but never happen during execution. High penalties do
not automatically make a system unpredictable: if there is no uncertainty this is not a
problem. On the other hand, high levels of uncertainty only become harmful to timing
predictability if the associated penalties are large.
As noted before, the processor caches have a strong influence on both the average-case
and the worst-case performance. Due to the high cache-miss penalties they have a poten-
tially strong impact on the predictability of a system. Several properties of the processor
caches influence predictability: replacement policy, write policy, allocation policy, etc.,
see [Heckmann et al., 2003]. Of these, the replacement policy has by far the strongest
influence on the predictability of the cache behavior. We will investigate the following
previously introduced replacement policies regarding their timing predictability:

• Least Recently Used (LRU) used in Intel Pentium I and MIPS 24K/34K

• First-In First-Out (FIFO or Round-Robin) as used in ARM9, ARM11, Intel
XScale

• Most Recently Used (MRU) as described in [Al-Zoubi et al., 2004,Malamy et al.,
1994]

• Pseudo-LRU (PLRU) used in PowerPC 75x and Intel Pentium II-IV

The cache miss penalty is the same for all of the considered replacement policies. Timing
predictability of cache replacement policies therefore only depends on the amount of
uncertainty.

60

5.2. UNCERTAINTY IN CACHE ANALYSIS

Contributions

We introduce two metrics, evict and fill, that capture our notion of the predictability
of cache replacement policies.
Every cache analysis has to cope with a certain amount of uncertainty resulting from
various sources explained in Section 5.2. The two metrics, evict and fill indicate how
quickly knowledge about cache hits and misses can be (re-)obtained. They mark a limit
on the precision that any cache analysis can achieve, be it by abstract interpretation or
any other sound method. A thorough analysis of the LRU, FIFO, MRU, and PLRU
policies yields the respective values under these metrics.
Further analyses elaborate on these results and yield a more refined view on the limits of
cache analyses: While evict and fill constitute milestones in the recovery of information,
supplementary results show how information evolves in between.

5.2 Uncertainty in Cache Analysis

In Section 4.1, we have introduced the concept of may and must cache information. may
and must caches are upper and lower approximations, respectively, to the contents of all
concrete caches that will occur whenever program execution reaches a program point.
Usually there is some uncertainty about the cache contents, i.e., the may and must
caches do not coincide; there are memory blocks which can neither be guaranteed to be
in the cache nor not to be in it.
The greater the uncertainty in the must cache, the worse the upper bound on the worst-
case execution time will be. Similarly, greater uncertainty in the may cache entails a
less precise lower bound on the best-case execution time. In addition, more cases have
to be considered in the timing analysis making it more expensive, if a memory access
cannot be classified as a hit or a miss.
There are several reasons for uncertainty about cache contents:
• Static cache analyses usually cannot make any assumptions about the initial cache

contents. Cache contents on entrance depend on previously executed tasks. Due
to timing anomalies [Lundqvist and Stenström, 1999, Reineke et al., 2006], even
assuming a completely empty cache may not be conservative as shown in [Berg,
2006]. The only safe initial must cache is the empty set, whereas the only safe
initial may cache must contain every memory block that may be mapped to the
particular cache set.

• At control-flow joins, analysis information about different paths needs to be safely
combined. Intuitively, one must take the intersection of the incoming must in-
formation and the union of the incoming may information. A memory block can
only be in the must cache if it is in the must caches of all predecessor control-flow
nodes, correspondingly for may caches.

61

CHAPTER 5. PREDICTABILITY METRICS

• In data-cache analysis, the address analysis may not be able to exactly determine
the address of a memory access. Then the cache analysis must conservatively
account for all possible addresses. This especially deteriorates may information.
• Statically undetermined preempting tasks may change the cache state at preemp-

tion points [Gebhard and Altmeyer, 2007].
Since information about the cache state may thus be unknown or lost, it is important
to recover information quickly to be able to classify memory accesses safely as cache
hits or misses. This is possible for most caches. However, the speed of information
recovery greatly depends on the cache replacement policy. It strongly influences how
much uncertainty about cache hits and misses remains. Thus, the speed of recovery is
an indicator of timing predictability.

5.3 Cache Predictability Metrics

We investigate how quickly cache contents become known when accessing a sequence
of memory blocks starting from an unknown cache state. For the replacement policies
we consider, an access to a cache set does not affect the state of other sets. Thus, we
consider the recovery of information about single cache sets.
We assume all memory accesses in the regarded sequences to be pairwise different. This
is sensible because recurring accesses do not contribute additional information about
the cache contents. Another reason is that arbitrarily long access sequences can be
constructed for two of the considered replacement policies, namely PLRU and MRU,
that never recover complete information about the cache contents if repetitive accesses
are allowed. In other words, there are access sequences such that different initial states
result in different states for an arbitrary number of accesses; they never converge.
From sections 2.2.1 and 2.2.9 recall updateP (k), CCP (k), CP (k), and S 6=, which denotes
the set of access sequences with pairwise different accesses. May and must information
available after observing an access sequence s without knowing the initial set state can
be defined as follows:

MayP (k)(s) :=
⋃

q∈CP (k)

CCP (k)(updateP (k)(q, s))

MustP (k)(s) :=
⋂

q∈CP (k)

CCP (k)(updateP (k)(q, s))

MayP (k)(s) is the set of cache contents that may still be in the cache set after accessing
the sequence s, regardless of the initial cache state. Analogously, MustP (k)(s) is the set
of cache contents that must be in the cache set after accessing the sequence s. Since we
take into account every initial state, MustP (k)(s) is always a subset of CCP (k)(s).
The following two definitions show how much may and must information is available
after observing any access sequence s of length n:

mayP (k)(n) := |MayP (k)(s)|,where s ∈ S 6=, |s| = n

mustP (k)(n) := |MustP (k)(s)|,where s ∈ S 6=, |s| = n

62

5.3. CACHE PREDICTABILITY METRICS

evict fill

[dex]
[fde]

[gfd]
[hgf][fec]

[gfe]
[fed]

Figure 5.2: Initially different cache sets converge when accessing a sequence
〈a, b, c, d, e, f, g, h, . . .〉 of pairwise different memory blocks. After evict ac-
cesses, any set contains only memory blocks from the access sequence. fill
accesses are required to converge to one completely known cache set. Selected
cache sets are annotated with their respective contents.

Note that mayP (k)(n) and mustP (k)(n) are well-defined: For all sequences s of length n,
|MayP (k)(s)| is equal (the same goes for |MustP (k)(s)|). The sequences contain pairwise
different accesses only and are thus equal up to renaming. Thus, MayP (k)(s1) equals
MayP (k)(s2) up to renaming, too, if |s1| = |s2|. In the following proofs we may therefore
always restrict our attention to one representative access sequence.

Metrics

Based on mayP (k)(n) and mustP (k)(n) we are ready to define evict and fill that indicate
how quickly may and must information can be recovered:

Definition 5.1 (evict and fill).

evictP (k) := min
{
n | mayP (k)(n) ≤ n

}
fillP (k) := min

{
n | mustP (k)(n) = k

}
Figure 5.2 illustrates the two metrics. evictP (k) tells us at which point we can safely pre-
dict that some memory blocks are no more in the cache, i.e., they are in the complement
of may information. Any memory block not contained in the last evictP (k) accesses
cannot be in the cache set: If some memory block not contained in the sequence could
have “survived” then any other memory block not contained in the sequence could have
“survived” as well. Then mayP (k)(n) = c � n where c is the number of blocks that
map to the cache set1. Less than evictP (k) accesses do not allow to predict any misses.
The greater evictP (k), the longer it takes to gain may information, and furthermore, the

1The definition of evict and the following analyses are based on the reasonable assumption that c is
larger than evict.

63

CHAPTER 5. PREDICTABILITY METRICS

obtained may information is less precise. The obtained may information is less precise,
because any of the greater number of evictP (k) memory blocks may still be in the cache
set.
After fillP (k) pairwise different memory accesses we know exactly what is contained
in the cache set, namely the last k accesses, i.e., we obtain complete may and must
information. This allows us to precisely predict cache hits and misses. In contrast to may
information, some must information is directly obtained with the first memory accesses.
At least the most recently accessed memory block is in the cache set. Thus, it is pointless
to define a counterpart to evict for must information, since min{n |mustP (k)(n) ≥ 1} = 1
for all policies.
Consider the implications of these metrics on any cache analysis. They mark a limit
on achievable precision: no analysis can infer any may information (complete must
information) given an unknown cache-set state and less than evict(k) (fill(k)) pairwise
different memory accesses. At the same time the metrics allow us to investigate the
quality of different analyses. Does an analysis need longer access sequences to derive
safe information about the cache set contents, or is it optimal with respect to the metrics?
Another application of these metrics is to determine the minimal effort to establish a
desired cache-set state, assuming that no explicit instructions are available to do so.
This may be used to eliminate initial uncertainty in cache analyses by prepending load
instructions. Or simply to create uniform conditions for performance measurements.
For this special purpose, it is interesting to investigate access sequences resulting in
cache misses only. In such a case, a desired cache-set state can be obtained faster. We
therefore distinguish M- and HM-access sequences: if we assume all accesses in the
regarded sequences to be cache misses we denote this by the subscript M, otherwise
by HM. Thus fillLRU

HM (8) is the number of pairwise different accesses (hits or misses)
needed to know the exact contents of an 8-way cache set using LRU replacement. For
brevity, we will also use e(k) and f(k) for evict(k) and fill(k).
As we have noted above, some must information can be immediately obtained with one
individual access. The following definition of the minimal life-span captures how this
generalizes:

Definition 5.2 (Minimal life-span).

mlsP (k) := max
{
n | mustP (k)(n) = n

}
The minimal life-span is the minimal number of distinct accesses necessary to evict a
memory block that has just been accessed out of a cache set (not counting the access
that possibly brought the memory block into the set). In other words, it tells us how
many of the most-recently used memory blocks are always in the cache.
Based on the minimal life-span of a policy, it is easy to determine some must information:
the last mls(k) accessed memory blocks are always in the cache set if they were pairwise
different.

64

5.3. CACHE PREDICTABILITY METRICS

Equalities

The definitions given in the previous section were chosen to be as uniform as possible:
they all relate mustP (k)(n) and mayP (k)(n) with k and n. However, for the following
proofs we need to establish some equalities to ease argumentation about evict, fill, and
mls.
Lemma 5.3. evictP (k) is the minimal length of access sequences such that only memory
blocks of the sequence may be contained in the cache set.

evictP (k) = min
{
n | ∀s ∈ S 6=, |s| = n : MayP (k)(s) ⊆ SC(s)

}
Proof. We need to show mayP (k)(n) ≤ n⇔ ∀s ∈ S 6=, |s| = n : MayP (k)(s) ⊆ SC(s).
⇐ is clear since |SC(s)| = |s| = n and therefore |MayP (k)(s)| ≤ n.
⇒: Assume MayP (k)(s) 6⊆ SC(s) for some s. Then at least one memory block a not
contained in s must have survived. Upon an access, the update process of the status
bits is independent of the tag bits of all non-accessed memory blocks. Thus, the tag
bits of a can be chosen arbitrarily. I.e., any other memory block b 6∈ SC(s) could have
survived as well. Then, mayP (k)(n) = c� n where c is the number of blocks that map
to the cache set.
Lemma 5.4. This following equation makes explicit that the cache set is filled with the
last k accesses of the access sequence s, once its state is known.

fillP (k) = min
{
n | ∀s ∈ S 6=, |s| = n, s = s1 ◦ s2, |s2| = k : MustP (k)(s) = SC(s2)

}
Proof. One needs to show mustP (k)(n) = k ⇔ ∀s ∈ S 6=, |s| = n, s = s1 ◦ s2, |s2| = k :
MustP (k)(s) = SC(s2).
The ⇐ direction of the equivalence is obvious. For ⇒ one needs to show that whenever
mustP (k)(n) = k then for any sequence s = s1 ◦ s2 of length n ≥ k, where |s2| = k,
MustP (k)(s) = SC(s2). This holds because SC(s2) ⊇ MustP (k)(s): For any access a in
s2 there is an initial state, such that the access to a misses and the following less than k
accesses in s2 do not evict it. Therefore, each a in s2 is contained in one of the intersected
sets. In addition |SC(s2)| = k. As |MustP (k)(s)| = k, SC(s2) and MustP (k)(s) must be
equal.
Lemma 5.5. An address a that has just been accessed will at least remain in the cache
set for the mlsP (k) subsequent accesses.

mlsP (k) = max
{
n | ∀s ∈ S 6=, |s| < n : a ∈Mustk(〈a〉 ◦ s)

}
Proof. We need to show mustP (k)(n) = n⇔ ∀s ∈ S 6=, |s| < n : a ∈Mustk(〈a〉 ◦ s).
⇒: For all access sequences s ∈ S 6=,MustP (k)(s) ⊆ SC(s). SincemustP (k)(n) = n, for all
access sequences s of length n: |MustP (k)(s)| = n = |SC(s)|. Therefore MustP (k)(s) =
SC(s).
⇐: mustP (k)(n) ≥ n since the last n memory blocks are always contained in the cache
set. Obviously mustP (k)(n) ≤ n.

65

CHAPTER 5. PREDICTABILITY METRICS

5.4 LRU Caches

LRU replacement conceptually maintains a queue of length k for each cache set, where
k is the associativity of the cache. If an element is accessed that is not yet in the cache
(a miss), it is placed at the front of the queue. The last element of the queue is then
removed if the set is full. It is the least-recently-used element of those in the queue. At
a cache hit, the element is moved from its position in the queue to the front, in this
respect treating hits and misses equally.
The contents of LRU caches are very easy to predict. For memory access sequences
with pairwise different accesses and a strict least-recently-used replacement, we obtain
the following tight bounds.

Theorem 5.6 (evictLRU, fillLRU,mlsLRU).
After k pairwise different memory accesses the contents of a k-way LRU-set are precisely
determined:

evictLRU
HM (k) = evictLRU

M (k) = fillLRU
HM (k) = fillLRU

M (k) = mlsLRU(k) = k

Proof. We show that fillLRU
HM (k) ≤ k, which entails the rest of the statements in the

theorem. For any sequence s = 〈a1, . . . , ak〉 ∈ S 6= of length k and any state q =
[b1, . . . , bn]LRU(k), updateLRU(k)(q, 〈a1, . . . , ak〉) = [ak, . . . , a1]LRU(k), because a1, . . . , ak

are the k most-recently-used memory blocks. Therefore, mustLRU(k)(k) = k.

evict(k) and fill(k) tell us at which point any may and complete must information can
be determined. However, the metrics do not tell us how may and must information
evolves before and after these points. For the common case of an 8-way associative
cache, we have precisely determined how much may and must information is available
as a function in the number of accesses. Note that these functions mark the maximum
information that can be obtained; a particular analysis may be less precise. Figure 5.3
shows plots of these functions. In the case of LRU replacement these functions are quite
obvious, which will be different in the following cases of FIFO, MRU, and PLRU. Must
information rises with every access up to the minimal life-spanmlsLRU(8), which is equal
to fillLRU

HM (8) and evictLRU
HM (8). Up to evict(k) accesses, any memory block mapped to

the cache set may reside in the set.
We have determined these functions by exhaustively generating all successor states of all
possible initial cache-set states, exploiting symmetries. For LRU and FIFO replacement
this could be rather easily determined analytically, but for the other cases this would have
been very difficult. This automatic computation was only possible up to associativity 8
as the number of states grows rapidly with rising associativity.

5.5 FIFO Caches

FIFO cache sets can also be seen as a queue: new elements are inserted at the front
evicting elements at the end of the queue. In contrast to LRU, hits do not change

66

5.5. FIFO CACHES

#accesses5 10 15 208
mls

evictHM
fillHM

88

mayLRU(8)

mustLRU(8)

2

4

6

88

c

Figure 5.3: Evolution of may and must information of a 8-way LRU cache set. c is
the number of blocks that can be mapped to the cache set. May and must
information is shown by the dashed and the solid curve, respectively. From
fill(k) on the two functions have the same value.

the queue. Our representation of FIFO cache sets has to be interpreted in this way:
In [b, c, e, d], d will be replaced on a miss on x resulting in [x, b, c, e], as described in
Section 2.2.4.
Implementations use a modulo-k counter for each set pointing to the cache line to replace
next. This counter is increased if an element is inserted into a set, while a hit does not
change this counter.
In the case of misses only, FIFO behaves like LRU. Thus, the following tight bounds
are obvious:

evictFIFO
M (k) = fillFIFO

M (k) = k

For the HM -case, we need the following lemma:

Lemma 5.7 (Surviving elements).
Of i ≤ 2k − 1 pairwise different accesses, at least

⌈
i
2

⌉
survive in a FIFO cache set.

Proof. Assume there were m misses and h hits, m+ h = i. First, assume m ≥ h. Every
miss places a memory block at the front of the queue. min {m, k} ≥ ⌈ i

2

⌉
of the memory

blocks that caused misses must reside in the cache after sequence.
If m ≤ h, we use the fact that each miss evicts at most one “known” memory block from
the cache set, while inserting itself. Hence, with h ≤ k at least m+ (h−m) = h ≥ ⌈ i

2

⌉
of the accessed memory blocks must be contained in the cache.

Theorem 5.8 (evictFIFO
HM).

After accessing 2k − 1 pairwise different memory blocks in a k-way FIFO set, the set
contains only memory blocks from these 2k − 1 accesses. This bound is tight.

Proof. Using Lemma 5.7 with i = 2k−1 gives eFIFO
HM (k) ≤ 2k−1. The following example

shows the tightness. The access sequence 〈x1, . . . , xk−1, y1, . . . , yk−1〉 of length 2k−2 con-
ducted on the initial cache-set state [z, x1, . . . , xk−1] results in the state [yk−1, . . . , y1, z].
Since z survived, eFIFO

HM (k) > 2k − 2.

67

CHAPTER 5. PREDICTABILITY METRICS

#accesses5 10 15 201
mls

15
evictHM

23
fillHM

mayFIFO(8)

mustFIFO(8)

2

4

6

8

10

12

14
15

c

Figure 5.4: Evolution of may and must information of a 8-way FIFO cache set. c is the
number of blocks that can be mapped to the cache set.

Theorem 5.9 (fillFIFO
HM).

One needs at most 3k − 1 accesses for any initial cache-set state to reach a completely
known cache-set state. This bound is tight.

Proof. Theorem 5.8 states that after 2k − 1 accesses no more hits can occur. Since the
next k accesses will be misses, 3k−1 is a bound on fFIFO

HM (k). It is also a tight bound as
shown by a similar example as in the proof of Theorem 5.8. Again, assume initial cache-
set state [z, x1, . . . , xk−1]. The sequence 〈x1, . . . , xk−1〉 ◦ 〈y1, . . . , yk−1〉 ◦ 〈z, w1, . . . , wk−1〉
of length 3k−2 results in the cache-set state [wk−1, . . . , w1, yk−1], which does not contain
z, which is one of the last k memory blocks that were accessed. So fFIFO

HM (k) > 3k−2.

Theorem 5.10 (mlsFIFO).
The minimum life-span of a memory block in a FIFO-cache is 1.

Proof. Since the queue is not changed on a hit, the memory block just accessed may
reside at the end of the queue. Thus, it may be evicted with the next access.

As in the LRU-case we have determined the evolution of must and may information for
associativity 8 experimentally. Figure 5.4 illustrates the results. Disappointingly from
a predictability point-of-view, must information exceeding the minimal life-span of 1 is
only attained after 17 accesses.

5.6 MRU Caches

MRU stores one status bit for each cache line. In the following, we call these bits MRU-
bits. Every access to a line sets its MRU-bit to 1, indicating that the line was recently
used. Whenever the last remaining 0 bit of a sets status bits is set to 1, all other bits
are reset to 0. This asymmetry in the last bit set to 1 will play a role as we will see

68

5.6. MRU CACHES

later. At cache misses, the line with lowest index (in our representation the left-most)
whose MRU-bit is 0 is replaced.
We represent a sample state of an MRU cache set as [a, b, c, d]0101, where 0101 are the
MRU-bits and a, . . . , d are the contents of the set. On this state an access to e would yield
a cache miss and the new state [e, b, c, d]1101. Accessing d leaves the state unchanged. A
hit on c forces a reset of the MRU-bits: [e, b, c, d]0010.

Theorem 5.11 (evictMRU
M and evictMRU

HM).

evictMRU
M (k) = evictMRU

HM (k) = 2k − 2

gives a tight bound on the number of misses/accesses sufficient to evict all entries from
a k-way set-associative MRU cache set.

Proof. We prove the tight bounds by showing 2k−2 to be an upper bound for evictMRU
HM (k)

and a lower bound for evictMRU
M (k). This suffices to prove the tightness for both, since

by definition evictM(k) ≤ evictHM(k).
For the lower bound, consider the initial cache-set state s = [x1, . . . , xk]0...001 and access
sequence 〈y1, . . . , yk−1〉 ◦ 〈z1, . . . , zk−2〉. After the first part, the MRU-bits are reset, and
state s′ = [y1, . . . , yk−1, xk]0...010 results. The second part of the sequence replaces the
memory blocks y1, . . . , yk−2 resulting in the state s′′ = [z1, . . . , zk−2, yk−1, xk]1...110. xk is
still part of the set proving evictMRU

M (k) > 2k − 3.
For the upper bound, notice that at some point during any k pairwise different accesses
(hits or misses), the MRU-bits are reset. MRU-bits of lines that have not been accessed
until this point are then set to 0. If it took k accesses to reset the bits, exactly these k
memory blocks make up the cache set. Otherwise (less than k accesses), after the reset
k − 1 MRU-bits are 0, and an additional k − 1 accesses are sufficient because accesses
to memory blocks with MRU-bit 1 are impossible, from the reset point on. They would
be hits and violate our assumption of pairwise different accesses.

Theorem 5.12 (fillMRU).
For the MRU replacement policy it is impossible to give a bound on the number of
accesses needed to reach a completely known cache-set state:

fillMRU
HM (k) = fillMRU

M (k) =∞

Proof. Consider an access sequence of pairwise different accesses. After at most 2k − 2
accesses there will be only misses. Therefore a cache-set state s = [x1, . . . , xk]0...01 will
eventually occur for some x1, . . . , xk. It will take 2k − 2 further misses to eliminate xk,
hence future states following s will not consist of the last k accessed memory blocks.
Even worse, we will reach similar states [y1, . . . , yk]0...01 over and over again.

The next two lemmas compensate this gap in the results by giving results similar to
fillMRU(k).

69

CHAPTER 5. PREDICTABILITY METRICS

Lemma 5.13. Consider an MRU cache-set state [x1, . . . , xk]0...010...0 and an access se-
quence that only produces misses. Every memory block from that sequence will remain
in the cache set for at least k − 1 accesses.

Proof. Consider an arbitrary memory block e of the sequence. Since memory blocks are
inserted from left to right, all memory blocks in the set left of e will be replaced earlier
(after the next reset). Right of e there can be at most one memory block with MRU-bit
1. Thus, at least k − 2 other cache lines will be accessed before the next reset and thus
before e is replaced.

Theorem 5.14. Let k > 2. After at most 2k− 4 misses the last k− 1 accessed memory
blocks are present in the cache set, and the set is stable with respect to this weaker
property. This bound is tight.

f̃ ill
MRU
M (k) := min

{
n | mustP (k)

M (n) = k − 1
}

= 2k − 4

Proof. The first reset of the MRU-bits occurs after at most k − 1 accesses. If it takes
exactly k − 1 accesses the initial cache-set state fits the requirements of Lemma 5.13
proving the theorem for this case. Otherwise, the reset takes place after at most k − 2
accesses. k − 2 additional accesses are sufficient due to Lemma 5.13 because the miss
causing the reset has an MRU-bit of 1 and cannot be evicted by the next k − 2 misses.
Tightness is shown by the initial state [x1, . . . , xk]0...011 and the sequence
〈y1, . . . , yk−2〉 ◦ 〈z1, . . . , zk−3〉: [x1, . . . , xk]0...011 → [y1, . . . , yk−2, xk−1, xk]0...0100

→ [z1, . . . , zk−3, yk−2, xk−1, xk]1...100. yk−2, z1, . . . , zk−3 are the last k−2 misses but neither
xk−1 nor xk which are still in the cache set belong to the last k − 1 misses.

Theorem 5.15. Let k > 2. After at most 3k− 4 accesses (hits or misses) the last k− 1
accessed memory blocks are present in the cache set, and the set is stable with respect to
this weaker property. This bound is tight.

f̃ ill
MRU
HM (k) := min

{
n | mustP (k)

HM (n) = k − 1
}

= 3k − 4

Proof. Due to our general assumption about pairwise different accesses it holds that
after the MRU-bits have been reset the second time, no more hits are possible because
every line has been accessed at least once: every MRU-bit must have been 0 at some
time and 1 later on. Now, Lemma 5.13 is applicable and k − 2 further accesses are
sufficient.
The first reset occurs after at most k accesses, the second one after exactly k−1 additional
accesses. Adding the k−2 accesses after the second reset yields 3k−3. We now exclude
the cases where k accesses are needed for the first reset proving the upper bound of
3k − 4: if exactly k accesses were needed to reset the bits for the first time every cache
line with MRU-bit 1 must have been accessed. Thus there are no further hits possible
after the first reset, already.

70

5.7. PLRU CACHES

Consider the following cache-set states and access sequences:

[x1, . . . , xk−1, xk]0...00011

〈xk, u1, . . . , uk−2〉−−−−−−−−−−−−→ [u1, . . . , uk−2, xk−1, xk]0...00100

〈v1, . . . , vk−4, xk−1〉−−−−−−−−−−−−−→ [v1, . . . , vk−4, uk−3, uk−2, xk−1, xk]1...10110

〈vk−3, vk−2〉−−−−−−−→ [v1, . . . , vk−4, vk−3, uk−2, xk−1, vk−2]0...00001

〈w1, . . . , wk−3〉−−−−−−−−−−→ [w1, . . . , wk−3, uk−2, xk−1, vk−2]1...11001.

The last k − 1 accesses were vk−3, vk−2, w1, . . . , wk−3, but vk−3 has just been evicted by
wk−3. Only the next access (evicting uk−2) will make sure the last k−1 accessed memory
blocks are present in the cache set.
This shows tightness for k > 2. Note that for k = 4 the accesses v1, . . . , vk−4 and the
MRU-bit prefixes 0 . . . 0 and 1 . . . 1 do not exist.

Theorem 5.16 (mlsMRU).
The minimum life-span of a memory block in a MRU-cache is 2.

Proof. The MRU-bit of an accessed memory block e is always set to 1 resulting in
mlsMRU(k) > 1. But the next access may reset all the MRU-bits. If e is the left-most
memory block it will be replaced with the next access, which yields mlsMRU(k) = 2.

The evolution of may and must information is depicted in Figure 5.5. As complete must
information is never attained, the must-curve peaks at 7. Interestingly, may information
never drops from the 14 = 2k − 2 memory blocks that are reached after evict accesses.
This can be explained quite easily: the memory block that causes the reset of the MRU-
bits remains in the set for 2k− 2 further accesses. Due to the unknown initial state any
access could have caused the reset. This behavior is in contrast to that of LRU, FIFO,
and PLRU, where eventually only the last k accessed memory blocks may reside in a
cache set.

5.7 PLRU Caches

PLRU (Pseudo-LRU) is a tree-based approximation of the LRU policy. It arranges
the cache lines at the leaves of a tree with k − 1 “tree bits” pointing to the line to be
replaced next. A 0 indicating the left subtree, a 1 indicating the right. See Figure 5.6
or Section 2.2.6 for an explanation of the replacement policy. PLRU is much cheaper
to implement than true LRU in terms of storage requirements and update logic. This
comes at a price: it does not always replace the least-recently-used element.
PLRU has a special treatment of invalid lines. On a cache miss, invalid lines are filled
from left to right, ignoring the tree bits. However, the tree bits are still updated on such
an access.

71

CHAPTER 5. PREDICTABILITY METRICS

#accesses5 10 15 202
mls

14
evictHM

20
fill′HM

mayMRU(8)

mustMRU(8)

2

4

6

8

10

12

1414

c

Figure 5.5: Evolution of may and must information of a 8-way MRU cache set. c is the
number of blocks that can be mapped to the cache set. Note that complete
must information cannot be obtained, thus fill′.

Since illustrating the states of these cache sets is rather complicated and sometimes are
logically equivalent we introduce the notion of a normalized cache-set state. With no in-
valid lines, equivalent cache-set states with same content and same order of replacements
can be obtained by interchanging neighboring subtrees and flipping the corresponding
tree bit. We represent a concrete cache set by the equivalent one with all tree bits set to
1. For instance the concrete cache-set state [a, b, c, d]010 with tree bits 010 in Figure 5.6
is represented by [d, c, a, b]

∼=. Flipping the 0-bits to 1 and interchanging the correspond-
ing subtrees yields [a, b, d, c]011 and finally [d, c, a, b]111. Disregarding invalid lines the
right-most element will be replaced in the normalized representation on a cache miss; it
is pointed at by the tree bits. An access moves an element to the left-most position.
An access path to a cache line is a sequence of bits indicating the directions one has to
take to walk from the root to this line in the normalized representation of the cache set;
0 for left, 1 for right. E.g. the access path of d in [a, b, c, d, e, f, g, h]

∼= is 011.
We will interpret access paths as binary numbers. We will use two operators: ←−−−−−p1 . . . pn =
pn . . . p1 to reverse the order of bits and 1100101 = 0011010 to invert bits on paths.

Observation (Access path update).
Consider elements a 6= b with access paths pa and pb. Let pa = pre ◦ p1 ◦ posta and
pb = pre◦p1◦postb, where |p1| = 1, i.e., pa and pb have a common (possibly empty) prefix
until they diverge and finish with (possibly empty) suffixes posta and postb, respectively.
Accessing b moves it to the front with access path p′b = 0 . . . 0. Since a and b share a
prefix, flipping the bits on the path to b also affects a’s prefix: its new access path is
0 . . . 01 ◦ posta.

Definition 5.17 (Miss replacement distance).
The miss replacement distance mrd(e) of an element e is the minimum number of con-
secutive misses that are necessary to evict an element from a cache set q. For elements
e 6∈ q we define mrd(e) = 0.

72

5.7. PLRU CACHES

1

1 0

a b c ⊥

(a) Initial cache-set
state [a, b, c,⊥]110
with representation
[a, b,⊥, c]∼=.

0

1 0

a b c d

(b) After a miss
on d it becomes
[d, c, a, b]

∼=.

0

1 1

a b c d

(c) After a hit
on c it becomes
[c, d, a, b]

∼=.

1

0 1

a e c d

(d) After a miss
on e it becomes
[e, a, c, d]

∼=.

Figure 5.6: Three accesses to a set of a 4-way set-associative PLRU cache: a miss on
d followed by a hit on c and a miss on e. On a miss, one allocates invalid
lines from left to right. If all lines are valid one replaces the line the tree
bits point to. After every access all tree bits on the path from the accessed
line to the root are set to point away from the line. Other tree bits are left
untouched.

Lemma 5.18 (Miss replacement distance).
A cache line e with access path p1 . . . pn has miss replacement distancemrd(e) = pn . . . p1+
1 assuming no invalid lines.

Proof. Assuming no invalid lines, all misses will go to access path 1 . . . 1. Each miss
decrements pn . . . p1 by 1 for p1 . . . pn 6= 1 . . . 1: consider the dissection of p1 . . . pn into
1 . . . 10ppost. A miss updates p1 . . . pn to 0 . . . 01ppost by Observation 5.7. For pn . . . p1

this means going from ←−−ppost10 . . . 0 to ←−−ppost01 . . . 1, i.e., pn . . . p1 is decremented by one,
unless p1 . . . pn = 1 . . . 1. In that case, it is evicted by the next miss.

The cache line d with access path 011 from the example above will be replaced after
001 + 1 = 2 consecutive misses: 011→ 111→ replaced.

Theorem 5.19 (mlsPLRU).
The minimum life-span of a memory block in a PLRU-cache is mls(k) = log2k + 1. In
fact, the log2k+ 1 most-recently-used memory blocks alway reside in a PLRU-cache set.

Proof. After the access to a memory block its access path is 0 . . . 0. To replace this
memory block all bits on its access path must be flipped to 1 . . . 1. By Observation 5.7
each access to other memory blocks flips at most one of the bits of the access path to
1. To reach the lower bound of log2k + 1 one must access the neighboring subtrees in
a bottom-up fashion, to avoid flipping bits back to 0. Obviously, repeatedly accessing
memory blocks cannot accelerate eviction. Therefore, at least the last log2k+1 different
accesses to a cache set, or in other words the log2k+1 most-recently-used memory blocks,
reside in the set.

73

CHAPTER 5. PREDICTABILITY METRICS

Evict

Theorem 5.20 (evictPLRU
M).

evictPLRU
M (k) =

{
2k −√2k : k = 22i+1, i ∈ N0

2k − 3
2

√
k : otherwise

is a tight bound on the number of misses to evict all entries from a k-way set-associative
PLRU cache set.

Proof. Assuming no invalid lines, this proof is easy. It is a simple consequence of
Lemma 5.18 that k misses suffice to evict a complete set. If all lines are invalid, the
problem is equally easy. It becomes more complicated if some subset of size 0 < i < k
of the lines is invalid. The first i misses will then go into these invalid lines instead of
following the standard PLRU replacement policy. These accesses do however modify
the tree bits in the standard way, as if they had been hits.
The number of misses needed to completely evict the cache set is then determined by the
positions of the remaining k′ = k−i non-accessed lines. Each line can be associated with
the number of misses necessary to replace the content of that line. By Lemma 5.18 the
line with access path p1 . . . pn will be replaced after pn . . . p1 + 1 consecutive misses, i.e.,
the number of trailing 0s in p1 . . . pn mainly determines the miss replacement distance.
To have m trailing 0s none of the 2m − 1 neighbors in the particular subtree of height
m may have been accessed in the first phase, filling up the invalid lines. Any access in
the subtree would have flipped at least one of the final m bits. If k′ lines have not been
accessed yet, the maximal number of trailing 0s in any of these lines’ access paths may
be blog2k

′c.
So, the maximal distance to eviction of any untouched line is bounded by

0 . . . 0︸ ︷︷ ︸
blog2k′c

10 . . . 0 + 1 = 1 . . . 1︸ ︷︷ ︸
blog2k′c

01 . . . 1 + 1

= 1 . . . 1︸ ︷︷ ︸
blog2k′c+1

0 . . . 0 = 1 . . . 1︸ ︷︷ ︸
log2k

− 1 . . . 1︸ ︷︷ ︸
log2k−(blog2k′c+1)

= (2log2k − 1)− (2log2k−(blog2k′c+1) − 1) = k − k

2blog2k′c+1

All in all, we get z = i + k − k

2blog2k′c+1 = 2k − k′ − k

2blog2k′c+1 as an upper bound for the
number of accesses to evict a PLRU-set with misses only. Obviously, z is maximized by
a power of two (for any non power of two k′ = 2l + δ, 0 < δ < 2l, k′′ = 2l results in a
higher value of z), which allows us to simplify the formula to 2k − k′ − k

2k′
, assuming k′

is a power of two. Maximizing this yields

evictPLRU
M (k) =

{
2k −√2k : k = 22i+1, i ∈ N0

2k − 3
2

√
k : otherwise

74

5.7. PLRU CACHES

with

k′ =

{
1
2

√
2k : k = 22i+1, i ∈ N0√
k : otherwise

This proves the given evictPLRU
M (k) to be an upper bound. To prove its tightness

we can give access sequences and initial cache configurations that exactly reach the
bounds. Assume [⊥1, . . . ,⊥k−k′ , x1, . . . , xk′] with arbitrary tree bits as the initial configu-
ration. Then, the access sequence 〈y1, . . . , yk−k′〉 results in the normalized cache-set state[
yi1 , . . . , yik′ , xi1 , . . . , xik′ , yik′+1

, . . . , yik−k′

]∼=. Since k′ is a power of two the xi1 , . . . , xik′
make up a complete subtree. Therefore, they are not torn apart by accessing other lines
in the normalized representation. Furthermore, yk−k′ fills ⊥k−k′ which is adjacent to
xi1 , . . . , xik′ , moving the xi-subtree to second position from the left. Observe that the
access path 0 . . . 01 0 . . . 0︸ ︷︷ ︸

log2k′

leads to xi1 . By Lemma 5.18, it takes 1 . . . 1︸ ︷︷ ︸
log2k′

01 . . . 1+1 = k− k
2k′

further misses to eliminate xi1 . Together with the k − k′ previous accesses to fill the
invalid lines, it sums up to the given upper bound, proving its tightness.

If one cannot assume that only misses will occur, the number of accesses for eviction
gets even larger. However, we do not have to consider invalid lines because allocations
to invalid lines are equivalent to hits at those position.
For the case of hits and misses we need a simple lemma that relates the number of
accesses to the two halves of a cache set:

Lemma 5.21. The number of accesses to the two halves c1, c2 of a 2k-way cache set
differs by at most k.

Proof. Consider a situation with hi hits and mi misses to ci. For each but the first miss
on c2 there must be an access to c1 to flip the bits back to c2: h1 +m1 ≥ m2 − 1. Thus
the difference d = (h2 + m2)− (h1 + m1) ≤ m2 + h2 −m2 + 1 = h2 + 1. If h2 < k then
d ≤ k. The last possible case is h2 = k, in which all hits h2 must have preceded all
misses m2 due to the accesses in the sequence being pairwise different. But every further
access to c2 must then be directly preceded by at least one access to c1 again yielding
d ≤ k. (h1 +m1)− (h2 +m2) ≤ k by a similar argument.

Theorem 5.22 (evictPLRU
HM).

It takes at most k
2

log2 k + 1 pairwise different accesses to evict all entries from a k-way
set-associative PLRU cache set. Again, this is a tight bound.

Proof. Claim: let z(k) be an upper bound for the number of accesses needed to evict a
cache set of associativity k. Then z(2k) = 2z(k) + k − 1 is an upper bound for a set of
associativity 2k.
We consider a set of size 2k to be composed of two halves c1, c2 of size k. Wlog. let c1 be
the first half with no initial contents left. Let a1 and a2 be the number of accesses on c1
and c2 respectively to reach this state. Then c2 needs at most z(k)−a2 further accesses.
Since c1 consists of memory blocks from the access sequence only, every subsequent

75

CHAPTER 5. PREDICTABILITY METRICS

access to c1 will be a miss. Therefore, there can be at most one access to c1 between
two consecutive accesses to c2 from now on.
Combining the last two statements there can be at most 2(z(k)−a2)−1 further accesses
until c2 is completed, too. Adding the first a1 + a2 accesses results in a1 + a2 + 2(z(k)−
a2)− 1 = 2z(k) + a1 − a2 − 1. Using Lemma 5.21 this is bounded by 2z(k) + k − 1.
Solving the recurrence for z with the trivial value z(2) = 2 proves the upper bound.
To prove tightness assume a worst-case initial cache-set state ck and a worst case ac-
cess sequence sk = 〈u1, . . . , uz(k)〉 for associativity k are known. The access sequence
〈x1, . . . , xk, u1, v1, . . . , uz(k)−1, vz(k)−1, uz(k)〉 evicts the contents of the cache set with ini-
tial state [x1, . . . , xk] ◦ ck with no less than k + 2z(k)− 1 accesses.
For k = 2 all cache sets states and all access sequences of length 2 are worst case initial
cache-set states serving as a basis for the recursion.

Fill

Theorem 5.23 (fillPLRU
M).

After at most fillPLRU
M (k) = 2k−1 misses the cache-set state is completely known. This

bound is tight for k > 2. For k = 2, 2 is an obvious tight bound for fillPLRU
M .

Proof. At most k misses can go into invalid lines. The last of these accesses resides in
the line with access path 0 . . . 0 in the normalized cache set. According to Lemma 5.18,
it will be evicted after k further misses, i.e., the k−1 subsequent misses fill up the cache
set. Further misses result in a FIFO behavior. The following example proves tightness:
assume the initial cache-set state c = [⊥1, . . . ,⊥k] consisting of invalid lines only. Now,
consider the access sequence 〈x1, . . . , xk〉 ◦ 〈y1, . . . , yk−2〉. After processing 〈x1, . . . , x k

2
〉

x k
2
has access path 0 . . . 0. The next accesses xi go to the other half of c. Thus, the

access paths of x k
2
and xi have no common prefix. By Observation 5.7, x k

2
has access

path 10 . . . 0 after 〈x k
2
+1, . . . , xk〉. By Lemma 5.18, it will take 1 . . . 10+1 = k−1 further

misses to eliminate it, after k− 2 accesses it is still in the cache set. Thus, the cache set
does not consist of the last k accessed memory blocks, in particular it has not stabilized
yet.

Lemma 5.24. If it takes evictPLRU
HM (k) accesses to evict a cache set, the last two accesses

must have gone to different halves of the cache set.

Proof. Assuming this is false one could insert an additional miss-access between the last
two accesses on the half not accessed. Thus the number of accesses for eviction would
be increased by one contradicting the assumption of a worst case.

Theorem 5.25 (fillPLRU
HM).

After at most k
2

log2 k + k − 1 pairwise different accesses the PLRU cache-set state is
completely known. This bound is tight.

76

5.7. PLRU CACHES

#accesses5 10 15 204
mls

13
evictHM

19
fillHM

mayPLRU(8)

mustPLRU(8)

2

4

6

8

10

12
13

c

Figure 5.7: Evolution of may and must information of a 8-way PLRU cache set. c is the
number of blocks that can be mapped to the cache set.

Proof. We want to prove the given bound based on our results for evictPLRU
HM (k). The

difference fillPLRU
HM (k) − evictPLRU

HM (k) is k − 2. Since the last access to a set always
resides in the left-most position with access path 0 . . . 0, k − 1 additional misses suffice
to fill the set due to Lemma 5.18. This still leaves us one short of the given bound if
eviction took exactly evictPLRU

HM (k) steps. In that case, however, the last two accesses
must have gone to different halves due to Lemma 5.24. Thus, they have access paths
0 . . . 0 and 10 . . . 0. Due to Lemma 5.18 they will be replaced after k and k − 1 misses.
Thus k − 2 further accesses suffice.
Tightness is shown by modifying a generic worst-case example for ePLRU

HM (k). Let s =
〈x1, . . . , xe〉 be this worst-case access sequence (assuming the same initial cache-set
state). Let | denote the center of the cache set. Then s′ = 〈x1, . . . , xe−2, h〉◦〈y1, . . . , yk−2〉
of length evictPLRU

HM (k)+k−3 results in the intermediate cache-set state [h, . . . , xe−2, . . . |
xe−3, . . .]

∼= The final cache-set state is
[
yi1 , . . . , yik−2

, xe−3

]∼=.
Effectively, we remove the last two accesses from the old example and insert a hit h into
the access sequence accessing the left side of the (normalized) cache set. Knowing that
the last two accesses xe−3, xe−2 accessed different halves of the set2, the hit h changes the
order in which these two memory blocks will be replaced. Thus xe−3 must be evicted
from the set to stabilize it. Due to Lemma 5.18 this takes k − 1 additional accesses
because xe−3 has access path 10 . . . 0 after the hit. Carrying out s′ only, will result in
the cache-set state depicted above, which is not yet stabilized.

The evolution of may and must information for a PLRU-set of associativity k = 8 is
depicted in Figure 5.7. As in every policy, must information initially rises up to mls(k)
and reaches k after fill(k) accesses; may information drops to evict after evict accesses.
The further development of both curves is less uniform than in the other cases, which
might be attributed to the more complicated policy.

2This is due to the construction of our former worst-case example, see Theorem 5.22.

77

CHAPTER 5. PREDICTABILITY METRICS

5.8 Related Work

Sleator and Tarjan [Sleator and Tarjan, 1985] examine replacement policies from a dif-
ferent point of view. They investigate the amortized efficiency of the list update and
paging rules LRU, FIFO, LIFO, and LFU. As a reference they take optimal offline
policy OPT [Belady, 1966]. They show that any online algorithm must fare worse than
OPT by a certain factor and go on to prove that LRU and FIFO do perform as well
as possible for an online algorithm. Their work concerns theoretical performance lim-
its rather than predictability of replacement policies. In Chapter 6, we slightly extend
Sleator and Tarjan’s notion of competitiveness to that of relative competitiveness.
Al-Zoubi et al. perform measurements using the SPEC CPU2000 benchmarks [Al-Zoubi
et al., 2004], comparing the performance of different associativities and replacement
policies including FIFO, LRU, PLRU, MRU, and OPT. They conclude that LRU,
PLRU, and MRU show nearly the same performance. These policies exhibit similar
miss ratios as caches of half the size with OPT replacement. On the average they
clearly outperform FIFO. This interesting experimental result yields insights concerning
average-case performance in practice. It does however, not deal with predictability.
Similarly, [Grund and Reineke, 2008] efficiently estimate the performance of different
cache replacement policies on particular workloads using a Markov model. However,
both [Al-Zoubi et al., 2004] and [Grund and Reineke, 2008] give no guarantees on the
worst- or even the average-case performance.
Heckmann et al. provide must and may analyses for LRU, PLRU, and a pseudo round-
robin replacement policy in the context of worst-case execution time tools [Heckmann
et al., 2003]. Cache lines are assigned ages where “old” lines are close to eviction. Newly
introduced lines assume the minimum age 0. Updates change these ages to account for
all possible concrete scenarios: in the may analysis, the minimal possible age is taken, in
the must analysis the maximal. For LRU, this yields very precise and efficient analyses.
For PLRU, the must analysis loses precision while staying efficient. It can maximally
infer 4 of the 8 lines of an 8-way set-associative PLRU cache set which is strongly related
to our Theorem 5.19 and the competitiveness of PLRU relative to LRU, as discussed
in Chapter 6. The may analysis becomes useless since only ages 0 and 1 are reachable.
The manual of the PowerPC 75x series [Freescale Semiconductor Inc., 2002] gives the
number of uniquely addressed misses to flush an 8-way PLRU cache set used in these
CPUs, namely 12, which is an instance of evictPLRU

M .
In summary, Al-Zoubi et al. provide empirical performance results whereas Sleator and
Tarjan present a theoretical performance analysis that is independent of any particular
benchmark.
In contrast to performance, predictability in the sense of this chapter is concerned with
the obtainable precision of provable upper and lower bounds on execution times. Static
analysis is used to determine such bounds. Heckmann et al. provide specific static cache
analyses for several replacement policies and compare their precision. Our work presents
the theoretical limits of any static cache analysis.

78

5.9. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Table 5.1: Summary of the main results for all policies.
Policy eM(k) fM(k) eHM(k) fHM(k) mls(k)
LRU k k k k k
FIFO k k 2k − 1 3k − 1 1
MRU 2k − 2 ∞/2k − 4§ 2k − 2 ∞/3k − 4§ 2

PLRU
{

2k −√2k

2k − 3
2

√
k

}
2k − 1 k

2
log2 k + 1 k

2
log2 k + k − 1 log2 k + 1

Table 5.2: Examples for evict and fill for k = 4, 8.
k = 4 k = 8

Policy eM fM eHM fHM mls eM fM eHM fHM mls
LRU 4 4 4 4 4 8 8 8 8 8
FIFO 4 4 7 11 1 8 8 15 23 1
MRU 6 ∞/4 6 ∞/8 2 14 ∞/12 14 ∞/20 2
PLRU 5 7 5 7 3 12 15 13 19 4

5.9 Summary, Conclusions, and Future Work

An important part in the design of hard real-time systems is the proof of timeliness,
which is determined by the worst-case performance of the system. Performance boosting
components like caches have an increasing impact on both the average and the worst-
case performance. We investigated the predictability of four popular cache replacement
policies. To this end, we introduced the metrics evict and fill and determined their
values.
In these metrics, no policy can perform better than LRU because k is an obvious lower
bound for any replacement policy. The other policies under investigation, PLRU, MRU,
and FIFO, perform considerably worse: in the more interesting cases of evictHM(k)
and fillHM(k), FIFO and MRU exhibit linear growth in terms of k, while PLRU
grows super-linearly. However, instantiating k with the common values 4 and 8 shows a
different picture, see Table 5.2. Here, PLRU even fares slightly better than FIFO and
MRU. Yet, compared to 8-way LRU, PLRU, MRU, and FIFO take more than twice
as long to regain complete information. In particular, this differs from the worst-case
performance results obtained in [Sleator and Tarjan, 1985], where FIFO and LRU fared
equally well.
Our analysis of the evolution of may and must information further substantiates the
findings: MRU and even more so FIFO should not be considered for use in hard-
real time systems. These results support previous practical experience in static cache
analysis [Heckmann et al., 2003].

§See Theorem 5.14 and Theorem 5.15.

79

CHAPTER 5. PREDICTABILITY METRICS

The metrics allow us to investigate the precision of different analyses. Does an analysis
ever regain any may or complete must information? If so, does it need longer access
sequences to derive safe information about the cache contents than suggested by fill(k)
and evict(k), or is it optimal with respect to these metrics?
Future work could drop the restriction that all memory blocks of access sequences are
different. This could allow for the construction of precise and efficient (as possible) cache
analyses, as we are now aware of the limits. A first step would be to investigate the
normalization of arbitrary access sequences, e.g. 〈x1, . . . , xn, y, y〉 can be simplified to
〈x1, . . . , xn, y〉 in all replacement policies we considered. For LRU it suffices to keep the
last access to each memory block within the sequence, which means keeping at most k
memory blocks. Can we do something similar regarding FIFO or PLRU?

80

6
Relative Competitiveness of

Replacement Policies

We present a tool to automatically compute relative competitive ratios for a large class of
replacement policies, including LRU, FIFO, MRU, PLRU and OPT. Relative compe-
titive ratios bound the performance of one policy relative to the performance of another
policy. These performance relations allow us to use cache-performance predictions for
one policy to compute predictions for another, including policies that could previously
not be dealt with.
Most of the work presented in this chapter has been published in [Reineke and Grund,
2008a]. An extended abstract appeared in [Reineke and Grund, 2008b]. The chapter
goes beyond [Reineke and Grund, 2008b,Reineke and Grund, 2008a] in its treatment of
MRU and OPT, and in several general theorems about relative competitiveness.

6.1 Introduction

Developing cache analyses – analyses that statically determine whether a memory access
associated with an instruction will always be a hit or a miss – is a difficult problem.
Precise and efficient analyses have been developed for set-associative caches that employ
the least-recently-used (LRU) replacement policy [Ferdinand et al., 1997,Ferdinand and
Wilhelm, 1999,White et al., 1997,Ghosh et al., 1998,Chatterjee et al., 2001]. A state-of-
the-art LRU analysis has been described in Section 4.2. Other commonly used policies,
like first-in-first-out (FIFO) or Pseudo-LRU (PLRU), are more difficult to analyze, as
we have seen in Chapter 5. We are not aware of any published analysis that may safely
predict cache misses in the presence of FIFO, MRU or PLRU replacement.
Relative competitive analyses yield upper (lower) bounds on the number of misses (hits)
of a policy P relative to the number of misses (hits) of another policy Q. For example,
a competitive analysis may find out that policy P will incur at most 30% more misses
than policy Q and at most 20% less hits in the execution of any task. Note that P and
Q may have different associativities.

81

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

We propose the following approach to determine safe bounds on the number of cache
hits and misses by a task T under FIFO(k), PLRU(l)1, or any another replacement
policy:

1. Determine competitiveness of the desired policy P relative to a policy Q for which
a cache analysis exists, like LRU.

2. Perform cache analysis of task T for policy Q to obtain a cache-performance pre-
diction, i.e., upper (lower) bounds on the number of misses (hits) by Q.

3. Calculate upper (lower) bounds on the number of misses (hits) for P using the
cache analysis results for Q and the competitiveness results of P relative to Q.

Note that step 1 has to be performed only once for each pair of replacement policies.
The approach is safe due to the monotonicity of the performance relations: They preserve
upper (lower) bounds on the number of misses (hits).
A limitation of this approach is that it only produces upper (lower) bounds on the
number of misses (hits) for the whole program execution. It does not reveal at which
program points the misses (hits) will happen, something many timing analyses need.
We will demonstrate that relative competitiveness results can also be used to obtain
sound may and must cache analyses [Ferdinand and Wilhelm, 1999], i.e., analyses that
can classify individual accesses as hits or misses.
In this chapter, we present a tool to automatically compute relative competitiveness
results for a large class of replacement policies, including LRU, FIFO, MRU, PLRU,
and OPT. We generalize some of the automatically computed results, which hold for
fixed associativities, to arbitrary associativities. This is aided by the ability of our tool to
generate example memory access sequences that exhibit the worst-case relative behavior.
One of our results is that for any associativity k and any workload, FIFO(k) shows at
least half the number of hits that LRU(k) would show.

Outline

In Section 6.2 we formally introduce our notion of relative competitiveness and show how
to use it to obtain cache-performance predictions. In addition we discuss some general
properties of the definitions. In Section 6.3, we describe how to compute competitive
ratios automatically. Section 6.4 presents results obtained with our tool and a number
of generalizations to arbitrary associativities. We delineate our work from previous
work on competitive analysis in Section 6.5. Important consequences of our results and
possibilities of future work are summarized in Section 6.6.

6.2 Relative Competitiveness

In this section, we formally define our notion of relative competitiveness and show how
to use it to obtain cache-performance predictions. In addition we derive some useful
general properties of our concepts.

1k and l denote the respective associativities of FIFO(k) and PLRU(l).

82

6.2. RELATIVE COMPETITIVENESS

a, b, c ∈ M the set of memory blocks
〈b, b〉, 〈b, c, d〉, s, t ∈ S = M∗ the set of finite access sequences

〈b, c, d〉, s, t ∈ S 6= ⊂ S; the set of finite access sequences
with pairwise different accesses

P,Q ∈ Policy the class of replacement policies

[b, e, c, f]P , i
P , p ∈ CP the set of reachable cache-set states

of policy P with iP the initial state of P
after starting up the hardware

updateP : CP × S → CP function computing the effect of an access
sequence on a cache-set state under policy P

mP : CP × S → N the number of misses by policy P on
a given access sequence and cache-set state.

hP : CP × S → N the number of hits by policy P on
a given access sequence and cache-set state.

Figure 6.1: Domains and notations.

6.2.1 Definition of Relative Competitiveness

For the following definitions consider the domains and notations introduced in Sec-
tion 2.2.9 which are briefly recapitulated in Figure 6.1. The most important notions are
mP (q, s) and hP (q, s), which compute the number of of misses and hits, respectively, of
policy P starting in state q processing access sequence s. updateP (q, s) computes the
cache-set state after accessing a sequence s in state q under policy P . CP is the set of
reachable cache-set states of policy P and S denotes the set of finite access sequences.
Before giving the central definitions we first need to introduce compatible cache-set
states. We want to relate two policies in compatible state only. Intuitively, this ensures
that no policy is given an undue advantage by the state it is starting in.

Definition 6.1 (Compatible states).
Two cache-set states p ∈ CP and q ∈ CQ are called compatible, denoted p ∼ q, iff there
is some access sequence s ∈ S, such that p = updateP (iP , s) and q = updateQ(iQ, s).

Now we are ready to define our notion of relative competitiveness. It captures the
worst-case performance of one policy relative to another policy:

Definition 6.2 (Relative miss-competitiveness).
A policy P is k-miss-competitive relative to policy Q with additive constant c, short
(k, c)-miss-competitive, if

mP (p, s) ≤ k ·mQ(q, s) + c

for all access sequences s ∈ S and cache-set states p ∈ CP , q ∈ CQ that are compatible
p ∼ q.

83

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

In other words, policy P will incur at most k times the number of misses of policy Q plus
a constant c on any access sequence. Observe that this relation holds for individual cache
sets not for entire set-associative caches consisting of several cache sets. In the original
definition of competitiveness [Sleator and Tarjan, 1985], online policies were compared to
the optimal offline policy OPT, i.e., instantiating Q in our definition with OPT yields
the original definition except for the treatment of compatible states. In [Sleator and
Tarjan, 1985], the two states p and q do not have to be compatible.
We can define relative hit-competitiveness analogously to relative miss-competitiveness.
The definition has no counterpart in the original competitiveness definition of [Sleator
and Tarjan, 1985]. This is because no online policy is hit-competitive relative to the
optimal offline policy OPT2. However, in our setting of comparing two online policies
this is possible.

Definition 6.3 (Relative hit-competitiveness).
A policy P is k-hit-competitive relative to policy Q with subtractive constant c, short
(k, c)-hit-competitive, if

hP (p, s) ≥ k · hQ(q, s)− c
for all access sequences s ∈ S and cache-set states p ∈ CP , q ∈ CQ that are compatible
p ∼ q.

Notice, that the two definitions are not redundant. If policy A is k-miss-competitive
relative to policy B, with k > 1, this does not give us any clue regarding the hit-
competitiveness of A relative to B: Rewriting Definition 6.2 in terms of hits (hP (q, s) =
|s| −mP (q, s)) yields |s| − hP (q, s) ≤ k · (|s| − hQ(q′, s)) + c. For k > 1 this inequality
depends on |s|, the length of the access sequence.
We sometimes say that a policy is competitive relative to another policy without specify-
ing an appropriate additive (subtractive) constant. In such cases, we implicitly demand
that such a constant exists. The following definition is an example of such a case:

Definition 6.4 (Competitive ratio).
The competitive miss and hit ratios cmP,Q and chP,Q of P relative to Q are defined as

cmP,Q = inf {k | P is k-miss-competitive relative to Q}
and chP,Q = sup {k | P is k-hit-competitive relative to Q}.

In our cases, there is always a smallest (greatest) k, such that P is k-miss-competitive
(k-hit-competitive) relative to Q, which is not the case in general. Our focus will be on
computing competitive ratios and appropriate additive (subtractive) constants.
Why are we interested in competitive ratios? Consider a policy A that is k-miss-
competitive relative to policy B. A is also l-miss-competitive relative to B for l > k.

2For every online policy P one can incrementally construct an arbitrarily long access sequence that
incurs no hits under P : Always access the element that was just evicted by the online policy. Due
to its knowledge of future accesses, many of these accesses will be hits in OPT.

84

6.2. RELATIVE COMPETITIVENESS

However, the former statement is clearly a better characterization of the policy’s relative
competitiveness. In this sense, the competitive ratio is the best characterization of the
policy’s relative competitiveness. In particular, there are access sequences, such that the
ratio between the number of misses (hits) in policy A and the number of misses (hits)
in policy B approaches the competitive ratio in the limit.
Every policy is by definition 0-hit-competitive relative to every other policy. However, a
policy may not be k-miss-competitive relative to another policy for any k. In that case,
we will call it ∞-miss-competitive. For a policy A that is ∞-miss-competitive relative
to policy B, the number of misses incurred in A cannot be bounded by the number of
misses in B.
As noted before the notions of relative competitiveness are defined for individual cache
sets. However, they can easily be lifted to set-associative caches, which can be seen as
the composition of a number of cache sets.

6.2.2 Computing Bounds on Cache Performance

Assume policy P is k-miss-competitive with additive constant c relative to policy Q for
which we have a cache analysis, i.e., an analysis that can compute upper bounds on the
number of cache misses incurred by a task T . How can we obtain a sound upper bound
on the number of cache misses incurred by T under P using the bound computed for Q?
To answer this question, we need to dig into what such an upper bound is. Let S(T) ⊆ S
be the set of possible access sequences performed by task T . Depending on its input
T may exhibit different access sequences. If T ’s input is known S(T) may be a singleton
set. Then m̂Q(T) is an upper bound on the number of misses incurred by T under Q, if

max
s∈S(T)

max
q∈CQ

mQ(q, s) ≤ m̂Q(T).

We quantify over all cache-set states q ∈ CQ of the policy because we usually have no
knowledge about the cache-set state in which the execution of T begins3. We claim that
k · m̂Q(T) + c is an upper bound for P :

Theorem 6.5 (Global bounds).
Let policy P be (k, c)-miss-competitive relative to policy Q, and let m̂Q(T) be an upper
bound on the number of misses incurred by policy Q on task T . Then,

max
s∈S(T)

max
p∈CP

mP (p, s) ≤ k · m̂Q(T) + c,

i.e., k · m̂Q(T) + c is an upper bound on the number of misses incurred by P on task T .

3Do not confuse this with the initial state iP of the policy. This is the state at startup of the hardware.
When execution of T begins, other tasks have typically already been executed and thus modified
the state.

85

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

Proof. We have defined every cache-set state in CQ to be reachable (see Figure 2.4),
i.e., for every state q ∈ CQ there is a sequence s ∈ S, such that q = updateQ(iQ, s).
Observation (∗): This implies that every state q ∈ CQ is compatible with at least one
state p ∈ CP , i.e., q ∼ p. Then,

max
s∈S(T)

max
p∈CP

mP (p, s)

Def. 6.2≤ max
s∈S(T)

max
p∈CP

max
q∈CQ,q∼p

k ·mQ(q, s) + c

= k · (max
s∈S(T)

max
p∈CP

max
q∈CQ,q∼p

mQ(q, s)) + c

Observation (∗)
= k · (max

s∈S(T)
max
q∈CQ

mQ(q, s)) + c

≤ k · m̂Q(T) + c

Lower bounds on the number of hits can be computed similarly using hit-competitiveness
results.
We have made the assumption that nothing is known about the state of the policy T
is starting in. If we do have such knowledge, we can make use of it: Let IP ⊆ CP be
the possible starting states. Then we can restrict the set of starting states for the cache
analysis of Q to the subset {q ∈ CQ | q ∼ p, p ∈ IP} of CQ.

6.2.3 Obtaining May and Must Analyses

As mentioned in the introduction, we can also build sound may and must cache analyses
[Ferdinand et al., 1997,Ferdinand and Wilhelm, 1999] from competitiveness results. may
cache analyses determine for each program point a superset of the set of memory blocks
that may be in the cache when the control flow reaches this program point. Analogously,
must cache analyses determine a subset of the set of memory blocks that are in the cache
whenever the control flow reaches the program point. Results of a must analysis can be
used to safely predict cache hits. Cache misses can be predicted using the results of a
may analysis. Analyses are often not explicitly phrased as may or must analyses. Any
analysis that safely predicts cache hits can be seen as a must analysis; any analysis that
safely predicts cache misses can be seen as a may analysis.
As noted before, the notions of hit- and miss-competitiveness are in general not redun-
dant. In the special case of 1-competitiveness, however, they are:

Theorem 6.6 (1-Competitiveness).
Given two policies P and Q. The following two statements are equivalent:
(i) P is (1, c)-miss-competitive relative to Q.

(ii) P is (1, c)-hit-competitive relative to Q.

86

6.2. RELATIVE COMPETITIVENESS

Proof. Trivial: mP (q, s) ≤ 1 · mQ(q′, s) + c ⇔ |s| − mP (q, s) ≥ |s| − mQ(q′, s) − c ⇔
hP (q, s) ≥ 1 · hQ(q′, s)− c.

One can obtain sound may and must analyses from competitiveness results in the special
case of 1-competitiveness:

Theorem 6.7 (may and must analyses).
If policy P is (1, 0)-miss-competitive relative to policy Q, then
(i) a must analysis for Q is also a sound must analysis for P , and

(ii) a may analysis for P is also a sound may analysis for Q.

Proof. For (i): As P is (1, 0)-miss-competitive relative to Q, the contents of P always
subsume the contents of Q. Memory blocks that are definitely in Q must also be in P .
For (ii): Anything not contained in P cannot be in Q either. In other words, a cache
miss in P must also be a cache miss in Q.

6.2.4 Relation to Predictability Metrics

The predictability metrics of Chapter 5 are defined on access sequences with pairwise dif-
ferent accesses only. In contrast, relative competitiveness is defined on arbitrary accesses
sequences. Therefore, one cannot draw any conclusions on the relative competitiveness
of two policies based on their predictability metrics. However, one can derive constraints
on the predictability metrics of two policies based on their relative competitiveness:

Theorem 6.8 (Relation to evict and mls).
Let policy P (k) be (1, 0)-miss-competitive relative to policy Q(l), then
(i) evictPHM(k) ≥ evictQHM(l),

(ii) mlsP (k) ≥ mlsQ(l).

Proof. (i): Assume for a contradiction that evictPHM(k) < evictQHM(l). It is a simple con-
sequence of Lemma 5.3 that for every p ∈ CP (k) and s ∈ S 6= such that |s| = evictPHM(k),
CCP (k)(updateP (k)(p, s)) ⊆ SC(s). On the other hand, there must be a state q ∈ CQ(l)

and a sequence s ∈ S 6=, |s| = evictPHM(k), such that CCQ(l)(updateQ(l)(q, s)) 6⊆ SC(s).
Recall the following observation from the proof of Theorem 6.5: Every state q ∈ CQ(l)

is compatible with at least one state p ∈ CP (k), i.e., q ∼ p. Let q ∈ CQ(l) and
s ∈ S 6=, |s| = evictPHM(k) be such that CCQ(l)(updateQ(l)(q, s)) 6⊆ SC(s). Let p ∈ CP (k)

be compatible with q, i.e. p ∼ q. Then updateP (k)(p, s) ∼ updateQ(l)(q, s). However,
CCQ(l)(updateQ(l)(q, s)) 6⊆ CCP (k)(updateP (k)(p, s)) contradicting the assumption that
P (k) is 1-miss-competitive relative to policy Q(l) with additive constant 0.
(ii): Assume for a contradiction that mlsP (k) < mlsQ(l). According to Lemma 5.5,
there must be a state p ∈ CP (k) and a sequence s ∈ S 6=, |s| = mlsP (k) + 1, such that
a 6∈ updateP (k)(p, s). Take a state q ∈ CQ(l) that is compatible with p, i.e. p ∼ q.
Since mlsQ(l) ≥ mlsP (k), a ∈ updateQ(l)(q, s). Accessing a would thus yield a miss

87

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

in updateP (k)(p, s), but not in updateQ(l)(q, s). Since updateP (k)(p, s) ∼ updateQ(l)(q, s),
this again contradicts the assumption that P (k) is (1, 0)-miss-competitive relative to
policy Q(l).

6.2.5 General Competitiveness Properties

Before describing how to automatically compute competitiveness values, we state a num-
ber of general properties of the definitions and of classes of policies.
In their fundamental work, [Mattson et al., 1970] introduce the inclusion property (stack
property). A replacement policy F satisfies the inclusion property, if for any two instan-
tiations F (k) and F (l) with different associativities k and l, the instantiation with the
higher associativity always subsumes the contents of the instantiation with the lower
associativity. LRU is an inclusive replacement policy, while PLRU and FIFO are not.
For inclusive policies we can state the following theorem:

Theorem 6.9 (Inclusion property).
For a replacement policy F that satisfies the inclusion property, if l ≥ k, then
(i) F (l) is (1, 0)-miss-competitive relative to F (k),

(ii) F (l) is (1, 0)-hit-competitive relative to F (k).

Can a policy with lower associativity ever be competitive relative to one with a higher
associativity?

Theorem 6.10 (Lower associativity).
Let the policies P and Q have associativities l and m, respectively, with l < m. Then,
P is neither k-miss- nor k-hit-competitive relative to Q for any k.

Proof. Observation: Since Q has a higher associativity, a cache set of Q always contains
at least one element that is not contained in the corresponding cache set of P . We can
construct an access sequence that accesses precisely these elements.

Given that P is competitive relative to Q and Q competitive relative to R, then P is
also competitive relative to R:

Theorem 6.11 (Transitivity of relative miss-competitiveness).
Let P be (k, c)-miss-competitive relative to Q and let Q be (k′, c′)-miss-competitive rela-
tive to R. Then P is (k·k′, k·c′ + c)-miss-competitive relative to R.

Proof. We need to show that mP (p, s) ≤ (k·k′) · mR(r, s) + (k·c′ + c) for all access
sequences s ∈ S and cache-set states p ∈ CP , r ∈ CR that are compatible. If p ∈ CP is
compatible with r ∈ CR, then there is a sequence s, such that p = updateP (iP , s) and
r = updateR(iR, s) by definition. Let q = updateQ(iQ, s). q is compatible with p and r by
definition. By our assumptions,mP (p, s) ≤ k·mQ(q, s)+c andmQ(q, s) ≤ k′·mR(r, s)+c′.
Thus, mP (p, s) ≤ k · (k′ ·mR(r, s) + c′) + c = (k·k′) ·mR(r, s) + (k·c′ + c).

88

6.3. COMPUTING COMPETITIVE RATIOS

[e, a, b, c]FIFO, [e, a, b, c]LRU

e(0,0)

[a, b, c, d]FIFO, [a, b, c, d]LRU
e

(1, 1)
a (0, 0)

[e, a, b, c]FIFO, [c, e, a, b]LRU

c (0, 0)

[a, b, c, d]FIFO, [d, a, b, c]LRU

d (0, 0)

[e, a, b, c]FIFO, [c, e, d, a]LRU [e, a, b, c]FIFO, [e, d, a, b]LRU

e (1, 1)
c

(0, 1)

[d, e, a, b]FIFO, [d, e, a, b]LRU

d (1, 0)

LRUMRUlast-in first-in

Figure 6.2: Running example. Small part of the transition system in the computation
of competitiveness results for FIFO(4) vs LRU(4). In the LRU cache-
set states, elements are ordered from most- to least-recently-used. In the
FIFO cache-set states, they are ordered from last- to first-in. Transitions
are labelled with the number of misses incurred. To explain the transitions,
we have additionally labelled them with the corresponding accesses.

Theorem 6.12 (Transitivity of relative hit-competitiveness).
Let P be (k, c)-hit-competitive relative to Q and let Q be (k′, c′)-hit-competitive relative
to R. Then P is (k·k′, k·c′ + c)-hit-competitive relative to R.

Proof. There is a q ∈ CP , such that p ∼ q and q ∼ r for every pair p ∈ CP , q ∈ CQ,
p ∼ r as in the proof of Theorem 6.11. By our assumptions, hP (p, s) ≥ k · hQ(q, s) − c
and hQ(q, s) ≥ k′ · hR(r, s) − c′. Thus, hP (p, s) ≥ k · (k′ · hR(r, s) − c′) − c = (k·k′) ·
hR(r, s)− (k·c′ + c).

6.3 Computing Competitive Ratios

We have developed a tool that allows us to compute competitive ratios automatically.
In the following we will describe our methodology.
The two policies P and Q under consideration induce a transition system that captures
how the two policies act relative to each other, processing the same memory accesses.
States of this transition system are pairs of cache-set states of policy P and policy Q.
Figure 6.2 shows a small part of such a transition system. Competitive ratios and
appropriate additive (subtractive) constants are properties of this system. To obtain
competitive ratios, we roughly have to determine the maximum (minimum) ratio of
misses (hits) in policy P relative to the number of misses (hits) in policy Q on any path
through it.

89

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

The main obstacle is that there are infinitely many cache-set states if one assumes the set
of memory blocks to be infinite. Although the set of memory blocks is finite in practice,
the state space of the transition system is in most cases still prohibitively large. To
overcome this problem we directly compute a finite quotient structure with respect to
an equivalence relation on states that preserves competitiveness properties.

6.3.1 Induced Transition System

Let us formally define the transition system induced by a pair of policies P and Q.

Definition 6.13 (Induced transition system).
Two policies P and Q induce a transition system TP,Q = (SP,Q, RP,Q), where

SP,Q = {(p, q) | p ∼ q, p ∈ CP , q ∈ CQ} ⊆ CP × CQ,

the states, are pairs of compatible cache-set states of policies P and Q.

TP,Q = {((p, q), (mp,mq), (p
′, q′)) | (p, q) ∈ SP,Q, a ∈M,

(p′, q′) = (updateP (p, 〈a〉), updateQ(q, 〈a〉)),
(mp,mq) = (mP (p, 〈a〉),mQ(q, 〈a〉))}

is the transition relation. Transitions are labelled with the number of misses (0 or 1)
incurred by the access in the two cache-set states, respectively.

Competitiveness values depend on the number of misses (hits) on paths through the
transition system:

Definition 6.14 (Path).
A path through a transition system T = (S,R), where R ⊆ S × L× S and L is a set of
labels, is a sequence of labels π = l1 . . . ln ∈ Ln, such that

∃s1, . . . , sn+1 ∈ S : ∀i ∈ {1, . . . , n} : (si, li, si+1) ∈ R.
The set of all paths of a transition system T is denoted by Π(T).

In our case, labels are pairs (mp,mq). The definitions of hit- and miss-competitiveness
translate directly to properties of paths of the induced transition system. A policy P is
k-miss-competitive relative to policy Q with additive constant c, if∑

i

π(i)|1 ≤ k ·
∑
i

π(i)|2 + c for every path π ∈ Π(TP,Q),

where |1 and |2 select the first and second component of a tuple, respectively. A policy
P is k-hit-competitive relative to policy Q with subtractive constant c, if(∑

i

1− π(i)|1

)
≥ k ·

(∑
i

1− π(i)|2

)
− c for every path π ∈ Π(TP,Q).

90

6.3. COMPUTING COMPETITIVE RATIOS

Cache-Set States
In Section 2.2.1, we have introduced CP , the set of reachable cache-set states of policy
P . CP ⊆Mk

⊥ × Bl, where k is the associativity of P and l is the number of status bits.
In order to ease presentation, we adopt the following notation:

C l
k = Mk

⊥ × Bl

So CP ⊆ C l
k, where k is the associativity of P and l the number of status bits required.

For instance, CLRU(k) ⊆ C0
k , CMRU(k) ⊆ Ck

k , CPLRU(k) ⊆ Ck−1
k . PLRU can also be

modeled without status bits as described in Section 5.7.
Accesses can have two effects on such states:
• The order of the elements in the tuple is changed, depending only on the position of

the accessed memory block in the tuple and the status bits. In LRU, for instance,
the elements are ordered from most to least recently used and no status bits are
needed. In contrast, to represent states of MRU, we need k status bits.

• The position in the tuple of the element to be replaced is determined based on the
status bits. In our example of LRU, elements are replaced at a fixed position, the
right-most, i.e., the least-recently-used. In MRU, the position is determined by
the first status bit being 0.

Cache-set states of all the policies that we consider in this thesis, i.e., LRU, PLRU,
FIFO, and MRU, behave this way as well as all realistic policies we can imagine. The
main point is that they do not base their replacement or update decisions on the par-
ticular memory block or its address.

6.3.2 Quotient Transition System

Constructing the induced transition system is not feasible. As noted above, it is either
prohibitively large or even infinitely large, depending on the number of memory blocks
one assumes. To make the analysis feasible, we construct a finite quotient structure,
which has the same set of paths as the original system, but whose size is independent of
the number of memory blocks.
To build this finite quotient transition system, we rely on the following property, that
is satisfied by policies representable in the above way and all other cache replacement
policies we are aware of: Let h : M →M be a bijective renaming of the memory blocks
and h∗ the point-wise extension of h to cache-set states, that additionally maps ⊥ (empty
cache lines) to ⊥. Let q ∈ CP , then

updateP (h∗(q), 〈h(a)〉) = h∗(updateP (q, 〈a〉)),
�� ��6.1

i.e., isomorphic cache-set states behave the same. Obviously,

mP (h∗(q), 〈h(a)〉) = mP (q, 〈a〉),
�� ��6.2

because h(a) is contained in h∗(q) if and only if a is contained in q.

91

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

[a, b, c]LRU, [b,⊥, e]FIFO [f, g, l]LRU, [g,⊥,m]FIFO≈h

[c, a, b]LRU, [c, b,⊥]FIFO

(0, 1)c

[l, f, g]LRU, [l, g,⊥]FIFO

(0, 1)h(c) = l

≈h

Figure 6.3: In this example, we assume LRU and FIFO replacement. q1 =
[a, b, c]LRU, [b,⊥, e]FIFO ≈h q2 = [f, g, l]LRU, [g,⊥,m]FIFO with an appro-
priate h-function. An access to c yields a hit in the first part of q1 and a miss
in the second part. The transition is therefore labelled with (0, 1). Accessing
h(c) = l on q2 has the same effect in terms of hits and misses. Also, the two
resulting states are in the ≈ relation by the same function h.

This means that the particular contents of a pair of cache-set states are irrelevant for
the possible future ratio of misses. What is important is the relation between the two
cache-set states, i.e., the relative positions of elements contained in both sets. For
instance, take the two pairs of cache-set states q1 = [a, b, c]LRU, [b,⊥, e]FIFO and q2 =
[f, g, l]LRU, [g,⊥,m]FIFO. q1 and q2 are different regarding the contents of the cache-set
states. Yet, we do not want to distinguish the two states, as they will show the same
relative hit/miss behavior, albeit on different access sequences. Recall that our relative
competitiveness definitions quantify over all access sequences.

Definition 6.15 (≈-Equivalence).
Let h : M → M be a bijective renaming of memory blocks, and h# be the point-wise
extension of h to pairs of cache-set states. We say that two states p and q are ≈-
equivalent, denoted p ≈ q, if they can be transformed into each other by renaming their
contents:

p ≈ q :⇔ ∃h : M →M.q = h#(p)

To indicate a particular feasible renaming function h we also write p ≈h q, if q = h#(p).

The rationale behind identifying two states q ≈h q′ is that given any access a ∈ M on
q, h(a) will have the “same” effect on q′:

q ≈h q′ =⇒
{

mP,Q(q, 〈a〉) = mP,Q(q′, 〈h(a)〉)
updateP,Q(q, 〈a〉) ≈h updateP,Q(q′, 〈h(a)〉)

�� ��6.3

This follows directly from Equation 6.1 and Equation 6.2. Figure 6.3 illustrates Equa-
tion 6.3 with the two example states q1, q2 given above.

Definition 6.16 (Quotient transition system).
A transition system T = (S,R), where R ⊆ S × L × S, and an equivalence relation
≡⊆ S × S on the states of T induces a quotient transition system T/≡= (S/≡, R/≡),

92

6.3. COMPUTING COMPETITIVE RATIOS

where

S/≡ is a set of unique representatives
of the equivalence classes of S with respect to ≡, S/≡⊆ S,

R/≡ = {(s, l, t) | s, t ∈ S/≡, ∃s, t ∈ S : (s, l, t) ∈ R, s ≡ s, t ≡ t}.

There is a transition (s, l, t) between two representatives iff there is a transition (s, l, t)
between two states s and t that are represented by s and t, respectively.
The relation ≈ defines an equivalence on states. It can therefore be used to partition
the states of SP,Q into equivalence classes. This induces the quotient transition system
T P,Q = (SP,Q, RP,Q) = T/≈. Figure 6.4 shows which states of our running example are
equivalent and the resulting quotient structure.
By the following theorem we can safely work with the quotient structure T P,Q instead
of TP,Q when computing competitiveness values.

Theorem 6.17 (Path equivalence).
The transition systems TP,Q and T P,Q are path equivalent, i.e., Π(TP,Q) = Π(T P,Q).

Proof. We need to show π = m1 . . .mn ∈ Π(TP,Q)⇔ π ∈ Π(T P,Q).
“⇒” follows from the definition of RP,Q: Let s1, . . . , sn+1 be such that (si,mi, si+1) ∈
RP,Q,∀i ∈ {1, . . . , n}. Let s1, . . . , sn+1 be the representatives of s1, . . . , sn+1 in SP,Q.
Then (si,mi, si+1) ∈ RP,Q,∀i ∈ {1, . . . , n}:

m1 m2 mn

≈ m1

≈ m2

≈ ≈ mn

≈
RP,Q :

RP,Q :Def. RP,Q⇒

“⇐” is just a little more complicated. For each of the edges (si,mi, si+1) in RP,Q there
is a corresponding edge in RP,Q by definition. By Equation 6.3 we can construct a path
through RP,Q from these edges as illustrated below:

m1 m2 m3 mn

≈

m1

≈≈

≈m2

≈

≈

≈

m3

≈

≈

≈ ≈

≈

≈

mn

≈

≈ ≈m2

≈ ≈m3

≈ ≈ ≈

mn

RP,Q :

RP,Q :Def. RP,Q⇒
Equation 6.3⇒

Observation. The set of equivalence classes of ≈ is finite, as it only depends on the
relative positions of elements contained in both sets and the cache sets’ status bits. In
particular, the index of ≈ is independent of the number of memory blocks.

93

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

[e, a, b, c]FIFO, [e, a, b, c]LRU

e(0, 0)

[a, b, c, d]FIFO, [a, b, c, d]LRU
e

(1, 1)
a (0, 0)

[e, a, b, c]FIFO, [c, e, a, b]LRU

c (0, 0)

[a, b, c, d]FIFO, [d, a, b, c]LRU

d (0, 0)

[e, a, b, c]FIFO, [c, e, d, a]LRU [e, a, b, c]FIFO, [e, d, a, b]LRU

e (1, 1)
c

(0, 1)

[d, e, a, b]FIFO, [d, e, a, b]LRU

d (1, 0)

LRUMRUlast-in first-in

(a)

[a, b, c, d]FIFO, [a, b, c, d]LRU(1, 1)

(0, 0)

[a, b, c, d]FIFO, [d, a, b, c]LRU

(0, 0)

[e, a, b, c]FIFO, [e, d, a, b]LRU

(1, 1)

(1, 0)

[e, a, b, c]FIFO, [c, e, d, a]LRU (0, 1)

(b)

Figure 6.4: Running example revisited. In (a), states that are equivalent according to
≈ are connected by dashed lines. “Merging” equivalent states yields the
quotient structure depicted in (b).

94

6.3. COMPUTING COMPETITIVE RATIOS

Therefore, the quotient transition system T P,Q is finite. Note that we directly construct
T P,Q, in particular we never construct the underlying transition system TP,Q.

Theorem 6.18 (Index of ≈).
The index |(C l

k × C l′

k′)/ ≈ | of ≈ is

|(C l
k × C l′

k′)/ ≈ | = 2l+l
′︸︷︷︸

status bits
of P and Q

·
k∑
i=0

(
k

i

)
︸ ︷︷ ︸

non-empty lines in P

·
k′∑
i′=0

(
k′

i′

)
︸ ︷︷ ︸

non-empty lines in Q

·
min{i,i′}∑
j=0

(
i

j

)(
i′

j

)
j!︸ ︷︷ ︸

number of overlappings
in non-empty lines

This can be bounded by

2l+l
′+k+k′ ≤ |(C l

k × C l′

k′)/ ≈ | ≤ 2l+l
′+k+k′ · e · k! · k′!︸ ︷︷ ︸

bound on number of overlappings

Proof. If two states differ in their status bits, they cannot be equivalent. This explains
the factor 2l+l

′ . To be equivalent, empty lines have to be in the same positions of the
tuples. Therefore we sum over all possible configurations of empty lines. For a given
configuration of empty lines, the contents of the two cache sets may overlap in 0 to
min{i, i′} positions, if i and i′ are the numbers of non-empty lines in the two cache
sets. The j overlapping lines may be in

(
i
j

)
different positions in the first set and in

(
i′

j

)
different positions in the second set. There can be j! orderings of these elements in the
second set relative to the first one (and vice versa).
The upper bound can be explained by considering the innermost factor

∑min{i,i′}
j=0

(
i
j

)(
i′

j

)
j!.

Expansion of the binomial coefficients and simplification yields
∑min{i,i′}

j=0
i!

(i−j)!·j! · i′!
(i′−j)! .

i and i′ are bounded by k and k′, respectively, which yields k!·k′!·∑min{k,k′}
j=0

1
(k−j)!·j!·(k′−j)! .

Finally, the sum can be bounded by
∑∞

j=0
1

(k−j)!·j!·(k′−j)! ≤
∑∞

j=0
1
j!

= e.
With the innermost factor bounded by e · k! · k′!, the two surrounding sums can be
simplified by the binomial theorem to 2k · 2k′ . The lower bound is trivial with 1 being a
lower bound for the innermost factor.

So |(C l
k × C l′

k′)/ ≈ | grows exponentially with the associativities k, k′ and status bits
l, l′. Still, associativities up to 8 for both policies are usually tractable. This is for
several reasons. Firstly, most policies do not require status bits. Their state can be fully
represented by the permutation of the memory blocks. Status bits were only required
for MRU. Secondly, the set of reachable states CP of a policy P with associativity k and
l status bits is a proper subset of C l

k, i.e. some of the states in C l
k are not reachable by

policy P . In LRU and FIFO, for instance, cache-set states can only be filled from left to
right, the state [⊥, a,⊥, c] is not reachable. Thirdly, and most importantly, usually only
a fraction of (CP ×CQ)/ ≈⊆ (C l

k×C l′

k′)/ ≈ is actually reachable, i.e., in SP,Q. The more
similar the two policies P and Q behave, the fewer compatible pairs of cache-set states
are reachable. For instance, |SPLRU(8),LRU(5)| = 576, whereas |(C0

8×C0
5)/ ≈ | = 1129472.

In contrast, |SPLRU(8),FIFO(5)| = 30808, which is still way below |(C0
8 × C0

5)/ ≈ |.

95

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

Computing Unique Representatives

In order to construct the quotient transition system on-the-fly, we have to compute
unique representatives of the states that we encounter in the construction of the tran-
sition system. Given a well-founded total order ≤M⊥⊆ M⊥ ×M⊥ on memory blocks
M and empty lines, such that ⊥ is the least element of ≤M⊥ , we define a well-founded
partial order ≤SP,Q

⊆ SP,Q × SP,Q on the states in SP,Q:

(p, q) ≤SP,Q
(p′, q′) :⇔ p <Cl

k
p′ ∨ (p = p′ ∧ q ≤Cl′

k′
q′),

where cache-set states in CP ⊆ C l
k and CQ ⊆ C l′

k′ are as well ordered lexicographically
based on ≤M⊥ :

[m1, . . . ,mk]b1...bl ≤Cl
k

[m′1, . . . ,m
′
k]b′1...b′l

:⇔ ∃i > 0 : ∀j < i : mj = m′j ∧mi ≤M⊥ m′i
∧ ∀i : bi = b′i.

Note that ≤SP,Q
is only partial in general as the status bits have to agree for a pair of

states to be in ≤SP,Q
. However, it is total on ≈-equivalent states. Therefore, there is

always a least state in an equivalence class.
We choose the least state of an equivalence class in this order as the representative of
its equivalence class:

SP,Q := {sP,Q ∈ SP,Q | ∀s′P,Q : sP,Q ≈ s′P,Q ⇒ sP,Q ≤SP,Q
s′P,Q}

These unique representatives can be efficiently computed by constructing a renaming
function h traversing a state from left to right and choosing the minimal memory block
still available for the renaming:

Example. Consider the total order ≤M to order memory blocks alphabetically: ⊥ ≤M⊥
a ≤M⊥ b ≤M⊥ c ≤M⊥ Then, the representative of [g, f,⊥, h], [g, h, l,⊥] can be
computed by consecutively renaming the elements of the state:

[g, f,⊥, h], [g, h, l,⊥] [a, f,⊥, h], [a, h, l,⊥]

 [a, b,⊥, h], [a, h, l,⊥] [a, b,⊥, c], [a, c, l,⊥]

 [a, b,⊥, c], [a, c, d,⊥]

Building the Quotient Transition System

The quotient transition system can be incrementally computed by Algorithm 1. The
algorithm proceeds by taking a yet unprocessed normalized state from the Unprocessed
queue and by computing all its normalized successor states until all states have been
processed. It starts with the pair of compatible states (iP , iQ). Pairs of cache-set states
are normalized by Normalize(p, q) as described in the previous paragraph.
The key insight is that Normalize(updateP (p, 〈a〉), updateQ(q, 〈a〉)) is equal for all
a 6∈ CCP (p) ∪ CCQ(q). All of these accesses will be misses in both p and q and thus result

96

6.3. COMPUTING COMPETITIVE RATIOS

in ≈-equivalent successor states. Therefore, it is sufficient to compute successors under
the finite number of accesses CCP (p) ∪ CCQ(q) ∪ {SelectOne(CCP (p) ∪ CCQ(q))},
where SelectOne(S) selects one of the memory blocks in S. The computation of the
set of transitions is straightforward.

Algorithm 1: Building Quotient Transition System
Input: Policies P,Q
Output: Quotient Transition System T P,Q = (SP,Q, RP,Q)
begin

SP,Q ← {Normalize(iP , iQ)}
RP,Q ← ∅
Unprocessed← [Normalize(iP , iQ)]
while ¬Empty(Unprocessed) do

(p, q)← Pop(Unprocessed)
foreach a ∈ CCP (p) ∪ CCQ(q) ∪ {SelectOne(CCP (p) ∪ CCQ(q))} do

(p′, q′)← Normalize(updateP (p, 〈a〉), updateQ(q, 〈a〉))
(mp,mq)← (mP (p, 〈a〉),mQ(q, 〈a〉))
RP,Q ← RP,Q ∪ {((p, q), (mp,mq), (p

′, q′))}
if (p′, q′) 6∈ SP,Q then

Push(Unprocessed, (p′, q′))
SP,Q ← SP,Q ∪ {(p′, q′)}

end

6.3.3 Computation of Competitive Ratios

Once we have built up the quotient transition system, determining the minimal k such
that P is hit- (miss-) competitive relative to Q amounts to computing the minimum
(maximum) cycle ratio [Lawler, 1966,Ahuja et al., 1993].
In the setting of miss-competitiveness, we wish to find a cycle through the quotient
transition system that maximizes the ratio of misses in P relative to the misses in
Q. Maximum ratio problems can easily be converted into minimum ratio problems by
changing the sign of the numerator or the denominator.
The minimum cycle ratio problem, also known as the minimum cost-to-time ratio cycle
problem, is the following: Given a directed graph G with both a cost and a travel time
associated with each edge, we wish to find a cycle in the graph with the smallest ratio
of its cost to its travel time.

97

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

Definition 6.19 (Minimum cycle ratio).
The minimum cycle ratio λ∗ of G is

λ∗ = min
Cycle C∈G

∑
Edge (i,j)∈C

cij∑
Edge (i,j)∈C

τij
,

where cij and τij are the cost and travel time associated with edge (i, j).

[Lawler, 1966,Ahuja et al., 1993] describe how to solve the minimum cycle ratio problem
by repeated applications of the negative cycle detection algorithm. Their algorithm relies
on the following observation: Let λ∗ be the minimum cycle ratio of a graph G, then

min
Cycle C∈G

∑
Edge (i,j)∈C

cij − λ∗τij = 0.

Based on this observation, one can do a binary search for λ∗. If the graph Gλ with edge
lengths lij = cij−λτij contains negative cycles, then λ∗ < λ. Otherwise, if all cycles have
positive length, λ∗ > λ. As one can bound the numerators and denominators of any
cycle ratio in the system4, one can terminate the binary search if under these constraints
only a single rational number may reside in the computed interval. This way the exact
minimum cycle ratio is obtained.
As noted above, we need to compute the maximum cycle ratio of T P,Q to obtain the
competitive miss ratio:

Theorem 6.20 (Maximum cycle ratio).
The maximum cycle ratio k of T P,Q, where the cost associated with a transition is the
number of misses incurred by P and the associated travel time is the number of misses
incurred by Q, is equal to the competitive miss ratio of P relative to Q.

Proof. We need to show that
1. P is k-miss-competitive relative to Q with some additive constant c.

2. P is not k′-miss-competitive relative to Q with any additive constant c′ for k′ < k.
For 1. we need to show∑

i

π(i)|1 ≤ k ·
∑
i

π(i)|2 + c for every path π ∈ Π(TP,Q) = Π(T P,Q).

Any path π can be split into three (possibly empty) parts π = π0π1π2, such that π0 and
π2 correspond to acyclic traversals of the state space SP,Q and π1 corresponds to a cycle
in SP,Q. Since SP,Q is finite, |π0| < |SP,Q| and |π2| < |SP,Q|. For the cyclic part π1 we
know that

∑
i π1(i)|1 ≤ k ·∑i π1(i)|2. The acyclic paths π0 and π2 can be “covered” by

an appropriate constant c ≤ 2 · |SP,Q|.
4By the number of states in the transition system.

98

6.3. COMPUTING COMPETITIVE RATIOS

(1, 1)

(0, 0)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

(a) Part of the Quotient Struc-
ture TFIFO(4),LRU(4)

(0, 0)

(1, 1)

(1, 1)

(0, 0)

(0, 1)

(1, 0)

(b) Labels reflect hits instead
of misses. Minimum cycle ra-
tio 1+0+0

1+0+1 = 1
2 .

0

1
2

1
2

0

-1
2

1

(c) Shortest path, w.r.t.
edge lengths w = h1− 1

2h2.
Cycle has length 0.

Figure 6.5: Running example. Hit-competitiveness of FIFO(4) vs LRU(4). FIFO(4) is
1
2
-hit-competitive relative to LRU(4) with subtractive constant 3

2
. The small

part of TFIFO(4),LRU(4) does not contain an acyclic path of length −3
2
. The

shortest path, in the example, is only of length −1
2
.

For 2.: Choose a “cyclic" path π that corresponds to the maximal cycle ratio k. As
k > k′,

∑
i π(i)|1 = k · ∑i π(i)|2 > k′ · ∑i π(i)|2. By repeating π sufficiently often∑

i π
n(i)|1 > k′ ·∑i π

n(i)|2 + c′ for any additive constant c′.

The proof shows that the additive constant c can only stem from finite acyclic pre- or
suffixes of paths. Once the minimum cycle ratio k has been determined, finding the
appropriate additive (subtractive) constant c reduces to computing the length of the
shortest path through T P,Q, where the edge weights w are chosen as cij − kτij. As k is
the minimum cycle ratio, the graph has no negative cycles. Paths with negative weight
correspond to situations where P can do “worse” than suggested by k relative to Q for a
limited number of steps. As an example, assume P to be 2-miss-competitive relative to
Q. Then, there must be paths of length one, such that P incurs a miss and Q does not.
Similarly, the competitive hit ratio is the maximum cycle ratio of T P,Q, where the cost
associated with a transition is the number of hits by P and the associated travel time is
the number of hits by Q.
In Figure 6.5, we illustrate the two steps of our algorithm for our running example and
the case of hit-competitiveness. To improve readability of the example, we omit the
node labels. In the course of computing competitiveness values, we generate example
access sequences and start states that correspond to the minimum cycle ratio k and the
constant c. This may help to understand results and to identify patterns, that lead to
more general analytical theorems.

99

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

6.3.4 Competitiveness Relative to OPT

It is also possible to compute the competitiveness of an online policy P relative to
OPT, the optimal offline policy. Except for the treatment of compatible states, this
yields competitiveness results in the sense of the definition of [Sleator and Tarjan, 1985].
To obtain competitiveness results in the precise sense of Sleator and Tarjan, one would
have to consider (CP × COPT(k))/ ≈ instead of SP,OPT(k), which is possible in principle
but yields more expensive analyses.
OPT is fundamentally different from online policies, as it bases its decisions on future
memory accesses rather than on memory accesses in the past. OPT replaces the memory
block that will not be accessed for the longest time in the future. It is thus not possible
to define a deterministic update-function for OPT because it would have to guess future
events. However, it is possible to capture the behavior of OPT by introducing non-
determinism whenever it “does not know” which memory block to replace. Each of the
possible replacements is then based on an assumption about the future. To enforce
this assumption, one needs to augment each OPT-state with a set of future constraints.
These future constraints are strict partial orders that constrain the order in which future
memory accesses are expected.

Example. Consider the following portion of the OPT-state space in which the future
constraints are attached to the contents of the OPT-states:

[a, b, c]a<b [a, b, d]a<b<c
d

d

[a, d, c]a<b
c<b

d

[a, b, d]b<c
a

d

[a, b, d]

d

b

In the first state [a, b, c]a<b, a is constrained to be accessed earlier than b in the future.
If d is accessed in this state, OPT cannot replace a, as it knows that b will definitely be
accessed later than a. It can only replace b or c. If it replaces b, the next access to c must
precede the next access to b. Therefore, the constraint c < b is introduced. Conversely,
if it replaces c, the next access to b must precede the next access to c. Introducing the
constraint b < c results in the partial order a < b < c. OPT can only make transitions
on accesses to memory blocks that are minimal according to the attached partial order.
In [a, b, d]a<b<c it is not possible to access b or c. Upon an access to a, a is removed from
the partial order. d is unconstrained, therefore hits on d do not change the state.

The initial state of OPT is iOPT(k) = [⊥, . . . ,⊥]∅. The non-deterministic updateOPT(k) :

COPT(k) ×M → P(COPT(k)) as described above can be formalized by

100

6.3. COMPUTING COMPETITIVE RATIOS

updateOPT(k)([a1, . . . , ak]<fut
, c) :=

∅ if ∃b : b <fut c
{[a1, . . . , ak]<fut\{(c,a)|a∈M}} else if ∃i : ai = c

{[a1, . . . , ai−1, c, ai+1, . . . , ak]<fut
| ai = ⊥} else if ∃i : ai = ⊥

{[a1, . . . , ai−1, c, ai+1, . . . , ak]<fut\{(c,a)|a∈M}∪{(aj ,ai)|j 6=i} | ∀j 6= i : ai 6<fut aj} else

where COPT(k) := Mk
⊥×P(M ×M). (Case 1): If the accessed element c is not minimal

in the order <fut, the access is not possible. (Case 2): If c causes a hit, all constraints
related to c are dropped as they were satisfied by this access. (Case 3): If c incurs a
miss and the set is not full, c is inserted into the set5. (Case 4): If c incurs a miss, and
the set is full, each maximal element among {a1, . . . , ak} in the order might be replaced.
If element ai is replaced, constraints are added to ensure that ai is indeed accessed last
among {a1, . . . , ak}.
updateOPT can be lifted to access sequences in the obvious way:

updateOPT(k)(p, 〈〉) = {p}
updateOPT(k)(p, 〈a〉 ◦ s) =

⋃
p′∈updateOPT(k)(p,a)

updateOPT(k)(p
′, s)

Note that updateOPT(k)([a1, . . . , ak]<fut
, s) does not get “stuck” as long as s does not

contradict <fut: The disjunction of the constraints that are added in the case of a miss∨
i

∧
j 6=i aj < ai is a tautology. Therefore, there is always at least one successor whose

constraints are satisfied by the rest of the sequence.
Due to the non-determinism of updateOPT(k), the definition of the transition relation of
the induced transition system TP,OPT(k) changes slightly:

RP,OPT(k) = {((p, q), (mp,mq), (p
′, q′)) | (p, q) ∈ SP,OPT(k), a ∈M,

(p′, q′) ∈ {updateP (p, 〈a〉)} × updateOPT(k)(q, 〈a〉),
(mp,mq) = (mP (p, 〈a〉),mOPT(k)(q, 〈a〉))}

The notion of compatibility needs to be slightly adapted as well: Two cache-set states
p ∈ CP and q ∈ COPT(k) are called compatible, denoted p ∼ q, iff there is some access
sequence s ∈ S, such that p = updateP (iP , s) and q ∈ updateOPT(k)(i

OPT(k), s).
The future constraints in the OPT-states may grow arbitrarily large. However, con-
straints concerning memory blocks that are neither contained in the OPT-state nor in
the state of the online policy P can be dropped in the quotient transition system. Drop-
ping these constraints does not change the observable behavior of T P,OPT(k) regarding
hits and misses: For each “constrained” memory block that would miss in both OPT-
and P -state there are many yet unaccessed and thus “unconstrained” memory blocks
that result in the same behavior anyway.

5As the set is not full, no replacements have yet taken place. So there cannot be any constraints.

101

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

6.4 Results

We have implemented the method in Java. Running our tool on a Core 2 Duo E6750
with 2GB of RAM, we have obtained a vast amount of competitiveness results for LRU,
FIFO, MRU PLRU, and OPT at associativities ranging from 2 to 8. To avoid any
paging activity, we have limited the heap space to be allocated by our tool to 1.5GB.
If the computation required more than 30 minutes or exceeded the heap space limit of
1.5GB, we report MEM or TIME, respectively.
In this section, we will present the most interesting results. The full set of results is
included in the appendix.
We also understand our tool as a means to come up with more general conjectures
about relative competitiveness of policies. Competitiveness results for several associa-
tivities often reveal a pattern that may then be generalized by the user. In the following
description we will point out such cases.

6.4.1 Miss-Competitiveness

Figure 6.6 depicts relative miss-competitiveness results among FIFO, PLRU, and LRU
if compared at the same level of associativity. One observation is that LRU(k) is k-miss-
competitive relative to FIFO(k) and vice-versa for all of the investigated associativities.
The same holds for FIFO(k) vs PLRU(k), and FIFO(k) vs MRU(k), but not for
PLRU(k) vs FIFO(k), and MRU(k) vs FIFO(k). For k ≤ 8, MRU(k) is (k−1, k−2)-
miss-competitive relative to LRU(k) and vice versa.
By [Sleator and Tarjan, 1985], FIFO(k) and LRU(k) are k-miss-competitive relative to
the optimal offline policy OPT. This implies at least k-miss-competitiveness relative to
any online algorithm. Conversely, as MRU(k) and PLRU(k) are not k-miss-competitive
relative to FIFO(k), they cannot be k-competitive relative to OPT(k).
PLRU(2) and LRU(2) are 1-miss-competitive relative to each other, as LRU and
PLRU coincide for associativity 2. In contrast, PLRU(4) and PLRU(8) are not k-
miss-competitive relative to LRU(4) and LRU(8), respectively, for any k. This is par-
ticularly interesting as it has been suggested in [Hergenhan and Rosenstiel, 2000] to
model a PLRU(k)-cache by an LRU(k)-cache to simplify WCET prediction, as it “does
not add a significant error.”
It is also interesting to compare policies of different associativities. We observe the
following for PLRU vs LRU:

k 2 4 8 16 32
l 2 3 4 5 6

PLRU(k) vs LRU(l) 1, 0 1, 0 1, 0 1, 0 1, 0

Generalizing this, we conjectured that PLRU(k) is (1, 0)-miss-competitive relative to
LRU(1 + log2k).

102

6.4. RESULTS

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7
LRU vs PLRU 1, 0 − 2, 1 − − − 5, 4
LRU vs MRU 1, 0 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6
FIFO vs LRU 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7
FIFO vs PLRU 2, 1 − 4, 4 − − − 8, 8
FIFO vs MRU 2, 1 3, 3 4, 4 5, 5 6, 6 MEM MEM
PLRU vs LRU 1, 0 − ∞ − − − ∞
PLRU vs FIFO 2, 1 − ∞ − − − ∞
PLRU vs MRU 1, 0 − ∞ − − − MEM
MRU vs LRU 1, 0 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6
MRU vs FIFO 2, 1 4, 3 6, 5 8, 7 10, 9 MEM MEM
MRU vs PLRU 1, 0 − 4, 3 − − − MEM

Figure 6.6: Miss-Competitiveness ratios k and additive constants c relating FIFO,
PLRU, LRU, and MRU at the same associativity. PLRU is only defined
for powers of two. As an example of how this should be read, LRU(4) is
2-miss-competitive relative to PLRU(4) with additive constant 1, whereas
PLRU(4) is not miss-competitive relative to LRU(4) at all. ∞ indicates that
there is no k such that the policy on the left is k-miss-competitive relative
to the policy on the right. MEM indicates that the computation required
more than 1.5GB of heap space.

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 0 0 0 0 0 0 0
LRU vs PLRU 1, 0 − 1

2
, 1 − − − 1

8
, 15

8

LRU vs MRU 1, 0 0 0 0 0 0 0
FIFO vs LRU 1

2
, 1

2
1
2
, 1 1

2
, 3

2
1
2
, 2 1

2
, 5

2
1
2
, 3 1

2
, 7

2

FIFO vs PLRU 1
2
, 1

2
− 1

4
, 5

4
− − − 1

11
, 19

11

FIFO vs MRU 1
2
,−1

2
0 0 0 0 MEM MEM

PLRU vs LRU 1, 0 − 1
2
, 1 − − − 1

4
, 3

2

PLRU vs FIFO 0 − 0 − − − 0
PLRU vs MRU 1, 0 − 0 − − − MEM
MRU vs LRU 1, 0 0 0 0 0 0 0
MRU vs FIFO 0 0 0 0 0 MEM MEM
MRU vs PLRU 1, 0 − 0 − − − MEM

Figure 6.7: Hit-Competitiveness ratios k and subtractive constants c relating FIFO,
PLRU, LRU, and MRU at the same levels of associativity. Again, MEM
indicates that the computation required more than 1.5GB.

103

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

Theorem 6.21 (PLRU(k) vs LRU(1 + log2k)).
PLRU(k) is (1, 0)-miss-competitive relative to LRU(1 + log2k).

Proof. The property follows directly from Theorem 5.19 in Chapter 5. The theorem
claims that a PLRU-cache set of associativity k always contains the 1 + log2k most-
recently-used elements. It therefore subsumes LRU-cache sets of that associativity.

By Theorem 6.6, PLRU(k) is also 1-hit-competitive relative to LRU(1 + log2k). Inter-
estingly, PLRU(k) is not miss-competitive at all relative to LRU(l), if l > 1 + log2k.

6.4.2 Hit-Competitiveness

The hit-competitiveness results show less symmetry than the miss-competitiveness re-
sults. Figure 6.7 depicts results relating FIFO, LRU, and PLRU at the same associa-
tivities. LRU(k) is not hit-competitive relative to FIFO(k) for any k.
For the case of LRU(3) vs FIFO(3) consider the following example access sequence
generated by our tool:

[a, b, c]LRU, [c, b, a]FIFO
d−→ [d, a, b], [d, c, b]

c−→ [c, d, a], [d, c, b]
b−→ [b, c, d], [d, c, b]

The sequence d, c, b incurs 2 hits in the FIFO-part and no hits in the LRU-part. The
final state [b, c, d], [d, c, b] is equivalent to the first state [a, b, c], [c, b, a] by the ≈-relation,
i.e., we can go through this sequence arbitrarily often by renaming d, c, b accordingly.

Theorem 6.22 (LRU(k) relative to FIFO(k)).
LRU(k) is not hit-competitive relative to FIFO(k).

Proof. For the general case of LRU(k) vs FIFO(k) we can generalize the example se-
quence given above: Start in the state [a1, . . . , ak]LRU, [ak, . . . , a1]FIFO. Then, incur
a miss in both sets, resulting in [b, a1, . . . , ak−1], [b, ak, . . . , a2]. Accessing 〈ak, . . . , a2〉
will incur k − 1 hits in the LRU-part and no hits in the FIFO-part. Furthermore,
the resulting state [a2, . . . , ak, b], [b, ak, . . . , a2] is equivalent to the first state accord-
ing to the ≈-relation. [a1, . . . , ak]LRU and [ak, . . . , a1]FIFO are compatible, as they
are reachable from the initial states [⊥, . . . ,⊥]LRU, [⊥, . . . ,⊥]FIFO by the sequence
〈a1, . . . , ak, ak, . . . , a1〉.

In contrast, FIFO(k) is 1
2
-hit-competitive relative to LRU(k) for all of the investigated

k. Consider the following theorem and its proof.

Theorem 6.23 (FIFO(k) relative to LRU(k)).
FIFO(k) is (1

2
, k−1

2
)-hit-competitive relative to LRU(k) for all k.

Proof. Consider any access sequence s. We argue that for every access a in s that incurs
a hit in LRU but a miss in FIFO, the previous access (if there is one) to a in s must have
been a hit in FIFO. We prove this by contradiction. Assume the previous access to a

104

6.4. RESULTS

was also a miss in FIFO. Immediately after this access a is in the “last-in” position. For
the next access to a to be a miss in FIFO, there must be at least k distinct accesses in
between. Otherwise, the next access to a would have incurred a hit. k distinct accesses
also evict a from LRU. This is in contradiction to the assumption that the access is a
hit in LRU.
There can be at most k − 1 situations where an access to a incurs a hit in LRU and
there is no previous access to a in the sequence, as the set can hold only k elements and
the contents of FIFO and LRU overlap at least in the most-recently-used element in
compatible states.

Considering the prominence of the two policies it is quite surprising that this relation
has apparently not been discovered before.
Again, it is worthwhile to compare policies of different associativities. Our analysis
results suggest that an LRU(2k − 1) is 1-hit-competitive (and therefore also 1-miss-
competitive) relative to FIFO(k):

2k − 1 3 5 7
k 2 3 4

LRU(2k − 1) vs FIFO(k) 1, 0 1, 0 1, 0

Theorem 6.24 (LRU(2k − 1) relative to FIFO(k)).
LRU(2k − 1) is (1, 0)-hit-competitive relative to FIFO(k).

Proof. We prove this by showing that an element a which is not contained in LRU(2k−1)
cannot be contained in FIFO(k). If a is not in LRU(2k − 1), there must have been at
least 2k − 1 accesses to distinct elements after the last access to a. At most k − 1 of
these accesses may have been hits in the FIFO(k). Thus, there must have been at least
k misses in the FIFO(k) since the last access to a. Therefore, a must have been evicted
from the FIFO(k) as well.

Due to Theorem 6.7, a may analysis for LRU(2k − 1) may be used as a may analysis
for FIFO(k) as well. Of course, one would expect a FIFO(k) to incur more misses than
an LRU(2k − 1) in practice. Still, no analysis has been published to date, that is able
to infer misses for a FIFO cache, i.e., a may analysis. Observe that it is critical to have
may information to gain precise must information for FIFO. Memory blocks that are
guaranteed to miss the cache can safely be assumed to be inserted in the last-in position,
which is far from eviction. In contrast, memory blocks that might hit the cache may
reside in the first-in position.
In contrast, increasing the associativity of FIFO relative to LRU never results in 1-
competitiveness, i.e., FIFO(l) is not 1-competitive relative to LRU(k) for any k and
l > 1:

Theorem 6.25 (FIFO(l) relative to LRU(k)).
For k≥2, FIFO(l) is not 1-hit-competitive relative to LRU(k) for any l.

105

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

Proof. Consider an access sequence s, such that every kth access in s accesses memory
block a and all other accesses are pairwise different. All but the first access to a will hit
in LRU(k). All other accesses will miss in both FIFO(l) and LRU(k). Since hits to
a do not move a back to the “front” of the FIFO-queue, every

⌈
l

k−1

⌉
th access to a will

miss in FIFO(l).

The analysis results of LRU vs MRU suggest that LRU(2k−2) is 1-competitive relative
to MRU(k):

Theorem 6.26 (LRU(2k − 2) relative to MRU(k)).
LRU(2k − 2) is (1, 0)-hit-competitive relative to MRU(k).

Proof. We prove that a memory block older than 2k−2 cannot be contained in a cache-
set of MRU(k). LRU(2k − 2) contains all memory blocks of age 0 . . . 2k − 3.
After accessing a memory block a, its MRU-bit is 1. After accessing at most k − 1
different memory blocks, the MRU-bits are reset, and a’s MRU-bit is 0. At this point,
its age is at most k − 1. Each further access to memory blocks older than a (which will
“age” a), will cause one of the k − 1 MRU-bits, that are 0, to flip. After at most k − 1
accesses, a must have been replaced, since its MRU-bit was 0.

Due to Theorem 6.7, a may analysis for LRU(2k − 2) may therefore be used as a may
analysis for MRU(k) as well. The previous theorem and the 1

2
-hit-competitiveness of

FIFO relative to MRU yield the following corollary:

Corollary 6.27 (FIFO(2k − 2) relative to MRU(k)).
FIFO(2k − 2) is 1

2
-hit-competitive relative to MRU(k).

Proof. This follows from the 1
2
-hit-competitiveness of FIFO(2k−2) relative to LRU(2k−

2) (Theorem 6.23) and the 1-competitiveness of LRU(2k−2) relative to MRU(k) (The-
orem 6.26) by Theorem 6.12.

Hit-competitive ratios obtained with our tool suggest that this is tight.

6.4.3 Miss-Competitiveness Relative to OPT

In the context of paging, [Sleator and Tarjan, 1985] studied the competitiveness of LRU,
FIFO, LIFO and LFU relative to OPT, the optimal offline policy [Belady, 1966]. As
described in Section 6.3.4, it is possible to automatically compute the competitiveness
of a policy relative to OPT.
Before discussing our results, let us recapitulate the main results of [Sleator and Tarjan,
1985]. They first show how poorly any online policy performs compared with OPT:

Theorem 6.28 (Online algorithms vs OPT, [Sleator and Tarjan, 1985]).
Let P be an online algorithm. Then there exist arbitrarily long access sequences s ∈ S,

106

6.4. RESULTS

Associativity: 2 3 4 5 6 7 8
LRU vs OPT 2, 1 3, 2 4, 3 5, 4 TIME MEM MEM

FIFO vs OPT 2, 1 3, 3 4, 4 MEM MEM MEM MEM
PLRU vs OPT 2, 1 − ∞ − − − MEM
MRU vs OPT 2, 1 4, 3 6, 5 MEM MEM MEM MEM

Figure 6.8: Miss-Competitiveness ratios k and additive constants c relating FIFO,
PLRU, MRU, and LRU with OPT at the same associativity. If the com-
putation required more than 30 minutes or exceeded the heap space limit of
1.5GB, we report MEM or TIME, respectively.

and cache-set states p ∈ CP (k), q ∈ COPT(l), such that

mP (k)(p, s) ≥ k

k − l + 1
·mOPT(l)(q, s)

for k ≥ l.

They go on to show that both LRU and FIFO achieve the optimal competitive ratio
k

k−l+1
:

Theorem 6.29 (LRU and FIFO vs OPT, [Sleator and Tarjan, 1985]).
Let P be LRU or FIFO. Then

mP (k)(p, s) ≤ k

k − l + 1
·mOPT(l)(q, s) + l

for k ≥ l, all access sequences s ∈ S, and all cache-set states p ∈ CP (k), q ∈ COPT(l).

This immediately implies that FIFO(k) and LRU(k) are (k
k−l+1

, l)-miss-competitive
relative to OPT(l) and any other policy P (l). As we have seen earlier, neither PLRU(k)
nor MRU(k) are k-competitive relative to FIFO(k). Therefore PLRU(k) and MRU(k)
are not optimal in the sense of [Sleator and Tarjan, 1985]; they cannot be k-competitive
relative to OPT(k).
We have used our tool to compute competitive ratios and appropriate constants for
LRU, FIFO, PLRU, and MRU relative to OPT. Results relating the policies at the
same associativities are depicted in Figure 6.8 other results can be found in the ap-
pendix. Whenever our tool did not run out of time or space, it correctly reproduced
the competitive ratios of LRU and FIFO. The quotient transition systems T P (k),OPT(l)

grow much more rapidly for rising associativities k and l than for two online policies, as
OPT-states carry future constraints. Due to the non-determinism, the average number
of transitions per state is also greater, than in the case of comparing two online policies.
Based on the limited set of results, we conjecture but do not prove that MRU(k) is
(2k−2, 2k−3)-miss-competitive relative to OPT(k). For PLRU, the following theorem
is easily proven:

107

CHAPTER 6. REL. COMPETITIVENESS OF REPLACEMENT POLICIES

Theorem 6.30 (PLRU vs OPT).
PLRU(k) is (log2k+1

log2k−l+2
, l)-miss-competitive relative to OPT(l) for log2 k + 1 ≥ l.

Proof. By Theorem 6.21, PLRU(k) is (1, 0)-miss-competitive relative to LRU(log2 k+1).
By Theorem 6.29, LRU(log2 k+1) is (log2 k+1

log2 k+1−l+1
, l)-miss-competitive relative to OPT(l)

for log2 k + 1 ≥ l. These two relations can be combined by Theorem 6.11.

Our tool shows that PLRU(4) is (2, 2)-miss-competitive relative to OPT(3). However,
the theorem only yields (log24+1

log24−3+2
, 3) = (3, 3), i.e., there is still room for improvement.

6.5 Related Work

There is a large body of work on competitive analysis. The field was pioneered by [Sleator
and Tarjan, 1985] in 1985. Amongst others, they studied LRU and FIFO relative to
OPT, the optimal offline policy [Belady, 1966], as discussed in the previous section. We
have observed that relative to each other LRU(k) and FIFO(k) are “only" k-competitive,
as is LRU(k) relative to PLRU(k). As PLRU(k) is neither competitive relative to
FIFO(k) nor relative to LRU(k) it is obviously also not competitive relative to OPT(k).
In [Aspnes and Waarts, 1996], relative competitiveness is used with a different meaning
than in our work. Their definition captures that an algorithm A is k-competitive relative
to the competitiveness of a subroutine B that it uses. If B is in turn implemented by
an l-competitive algorithm, the resulting algorithm is k · l-competitive overall. This
definition allows to perform modular competitive analyses.
In an effort to overcome weaknesses of traditional competitive analysis, [Koutsoupias
and Papadimitriou, 1994] propose two refinements of competitive analysis. One of the
refinements is coined comparative analysis. There, two classes of algorithms A and
B are compared to determine how powerful A is relative to B. Choosing A and B
to be singletons, comparative analysis coincides with our notion of relative competitive
analysis.
Smaragdakis et al. introduce Early Eviction LRU (EELRU) [Smaragdakis et al., 2003],
an adaptive algorithm based on the LRU stack model. They prove robustness of EELRU
with respect to LRU. They call a policy A robust with respect to policy B if A is k-
miss-competitive relative to B for some k. In subsequent work [Smaragdakis, 2004]
shows how to construct a policy AB from two given policies A,B, that is 2-robust, i.e.,
2-miss-competitive, with respect to both A and B.
There is one major difference between our approach and most of the existing work on
competitive analysis that we are aware of: Most work interprets the competitive ratio
as an indicator of the quality of a policy. In such work, the definition of competitiveness
is relaxed to better distinguish policies that perform very differently in practice, like
LRU and FIFO. For this purpose, our work is rather useless. If some policy A is
not competitive relative to some other policy B, this is not a good indicator of the

108

6.6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

performance A and B are going to show on the average. For our purpose of giving
guarantees on the number of hits or misses, the strict worst-case definition is, however,
the right choice.
Previous work on cache analysis of set-associative caches has been discussed in Chapter 4.
It mostly considered LRU replacement [Ferdinand et al., 1997,Ferdinand and Wilhelm,
1999,White et al., 1997, Ghosh et al., 1998, Chatterjee et al., 2001]. Cache analyses
embedded in timing analyses [Ferdinand et al., 1997, Ferdinand and Wilhelm, 1999,
White et al., 1997] classify individual accesses as hits or misses. Other approaches
using Cache Miss Equations [Ghosh et al., 1998] or Presburger formulas [Chatterjee
et al., 2001] compute the number of misses of larger parts of a program, like loop nests.
The scope of both approaches can be extended by our results. In [Heckmann et al.,
2003] a must analysis for an 8-way PLRU is discussed, that maintains the 4 most-
recently-used elements. The soundness of this approach can be easily explained by the
1-miss-competitiveness of PLRU(8) relative to LRU(4).

6.6 Summary, Conclusions, and Future Work

We have studied the relative competitiveness of the four well-known and widely-used
replacement policies LRU, FIFO, PLRU, and MRU. By building a finite quotient
structure of the transition system induced by a pair of policies, we were able to compute
competitive ratios automatically. The competitiveness analyses revealed interesting pre-
viously unknown relations between different policies. The results can be used in two
ways: One may bound the number of hits and misses for the execution of a program, or,
in the case of (1, 0)-competitiveness, one may build sound may and must analyses. The
relations between LRU(2k − 1), LRU(2k − 2), and FIFO(k), MRU(k), respectively,
allow to construct may cache analyses for caches with FIFO and MRU replacement.
These may analyses are even optimal with respect to the predictability metrics of Chap-
ter 5. In recent work, [Grund et al., 2008] have successfully applied the may analysis
for FIFO in the timing analysis of the Branch Target Buffer (BTB) of the Motorola
PowerPC 56x family.
The competitiveness results we are computing hold for arbitrary access sequences. There-
fore, they hold for any program. Most programs do not exhibit the worst-case relative
behavior. By restricting the possible access sequences it would be possible to obtain
smaller competitive ratios. Such restrictions could be for a particular program or for
classes of programs, like structured programs. However, restricting access sequences po-
tentially yields larger quotient transition systems. Another line of future work would be
to consider other relations between replacement policies, like the maximal difference of
the miss rates, which would require rather simple extensions of our current framework.

109

7
Sensitivity of Replacement Policies –

On the Correctness of
Measurement-based Timing Analysis

The sensitivity of a cache replacement policy expresses to what extent the initial state of
the cache may influence the number of cache hits and misses during program execution.
We have slightly modified the method presented in Chapter 6 to precisely compute
sensitivity properties for a large class of replacement policies including LRU, FIFO,
PLRU, and MRU. Analysis results demonstrate that the initial state can have a strong
impact on the cache performance if FIFO, MRU, or PLRU is used. A simple model of
execution time is used to evaluate the impact of cache sensitivity on measured execution
times. The model shows that underestimating the number of misses as strongly as is
possible for FIFO, MRU, and PLRU may yield worst-case-execution-time estimates
that are dramatically wrong.

7.1 Introduction

To obtain tight bounds on the execution time of a task, timing analyses must take into
account the cache architecture. In general, execution times of tasks vary depending on
inputs and the initial state of the hardware. A large part of this variation can usually be
attributed to the cache performance. At the level of individual instructions, the influence
of the initial state is particularly obvious: cache misses, pipeline stalls, etc. introduce
great variance into the execution time of an instruction. It is expected that some of the
variances in execution times of multiple instructions cancel each other out, i.e., worst-
cases do not coincide [Bernat et al., 2002]. In addition, one may expect different initial
states to eventually converge. This is probably true for pipeline states. In many cache
architectures, however, this is not the case [Berg, 2006].
Different methods have been proposed for timing analysis [Wilhelm et al., 2008]; mea-
surement1 [Petters, 2002,Bernat et al., 2002,Wenzel, 2006] and static analysis [Ferdinand

1Measurement-based timing analysis as discussed here is also referred to as hybrid measurement-based
timing analysis as opposed to end-to-end measurement-based analysis.

111

CHAPTER 7. SENSITIVITY OF REPLACEMENT POLICIES

et al., 2001, Theiling et al., 2000] being the most prominent. Both methods compute
estimates of the worst-case execution times for program fragments like basic blocks. If
these estimates are correct, i.e., they are upper bounds on the worst-case execution time
of the program fragment, they can be combined to obtain an upper bound on the worst-
case execution time of the task. This combination takes into account user-annotated or
automatically computed loop bounds.
While using similar methods in the combination of execution times of program fragments,
the two methods take fundamentally different approaches to compute these times:
• Static analyses based on abstract models of the underlying hardware compute

invariants about the set of all execution states at each program point under all
possible initial states and inputs and derive upper bounds on the execution time
of program fragments based on these invariants.

• Measurement executes each program fragment with a subset of the possible initial
states and inputs. The maximum of the measured execution times is in general an
underestimation of the worst-case execution time.

If the abstract hardware models are correct, static analysis computes safe upper bounds
on the WCETs of program fragments and thus also of tasks. However, creating abstract
hardware models is an error-prone and laborious process, especially if no precise specifi-
cation of the hardware is available. Recent work [Schlickling and Pister, 2007] explores
automation of the creation of abstract hardware models given a concrete VHDL model.
The advantage of measurement over static analysis is that it is more easily portable
to new architectures, as it does not rely on an abstract model of the architecture. In
addition it may compute more precise estimates of the WCET. On the other hand,
soundness of measurement-based approaches is often hard to guarantee. Measurement
would trivially be sound if all initial states and inputs would be covered. Due to their
huge number this is usually not feasible. Instead, only a subset of the initial states and
inputs can be considered in the measurements. Relatively simple architectures without
any performance-enhancing features like pipelines, caches, etc., exhibit the same timing
independently of the initial state. For such architectures, measurement-based timing
analysis is sound [Wenzel, 2006]. [Deverge and Puaut, 2005] and [Wenzel, 2006] propose
to lock the cache contents [Puaut and Decotigny, 2002,Vera et al., 2003] and to flush
the pipeline at program points where measurement starts. This is not possible on all
architectures and it also has a detrimental effect on both the average- and the worst-
case execution times of tasks. In this chapter, we study whether measurement-based
timing analysis can be performed in the presence of “unlocked” caches. To this end, we
introduce the notion of sensitivity of a cache replacement policy.
Sensitivity of a cache replacement policy expresses to what extent the initial state of the
cache may influence the number of cache hits and misses during program execution. We
first describe how to adapt the method described in Chapter 6 to automatically compute
sensitivity properties for a large class of cache replacement policies, including LRU,
FIFO, PLRU, and MRU. However, our main contributions besides the introduction of
sensitivity are the application of the analysis to relevant policies and the interpretation

112

7.2. SENSITIVITY

of the analysis results with respect to measurement-based timing analysis: Analysis
results demonstrate that the initial state of the cache can have a strong impact on the
number of cache hits and misses during program execution if FIFO, MRU, or PLRU
replacement is used. A simple model of execution time is used to evaluate the impact of
cache sensitivity on measured execution times. The model shows that underestimating
the number of misses as strongly as is possible for FIFO, MRU, and PLRU may yield
worst-case-execution-time estimates that are dramatically wrong. In a slightly modified
analysis we show that the “empty cache is worst-case initial state” assumption [Petters,
2002] is wrong for FIFO, MRU and PLRU. On the other hand, our analysis results
show that LRU lends itself well to measurement- or simulation-based approaches as the
influence of the initial cache state is minimal.

Outline

In Section 7.2 we formally introduce our notion of sensitivity. In Section 7.3 we describe
how to compute sensitive ratios automatically. Our results are presented in Section 7.4.
Their impact on measured execution times is evaluated in Section 7.5. Consequences of
our results are discussed in Section 7.6.

7.2 Sensitivity

Section 2.2.9 introduces important domains and notations used in the following defini-
tions and throughout the chapter. The most important notions aremP (q, s) and hP (q, s),
which compute the number of of misses and hits, respectively, of policy P starting in
state q processing access sequence s.

7.2.1 Definition of Sensitivity

We would like to investigate the influence of the state on the performance of a cache
replacement policy. As cache sets are usually independent of each other, we consider a
single cache set, not the entire cache. I.e. we are interested in how sensitive a policy is
to the particular state a cache set is in when beginning to process an access sequence.
The results can easily be translated to sensitivity properties of entire caches.

Definition 7.1 (Miss-sensitivity to initial state).
A policy P is k-miss-sensitive with additive constant c, short (k, c)-miss-sensitive, if

mP (q, s) ≤ k ·mP (q′, s) + c

for all access sequences s ∈ S and all cache-set states q, q′ ∈ CP .

The definition captures the maximal influence of the current state of a replacement
policy on the future number of misses. Policy P will incur at most k times the number

113

CHAPTER 7. SENSITIVITY OF REPLACEMENT POLICIES

of misses plus constant c on any access sequence starting in state q instead of any other
state q′. Miss-sensitivity can be cast as competitiveness of a policy relative to itself.
However, the states q, q′ are not restricted to be compatible.
Likewise we define hit-sensitivity.

Definition 7.2 (Hit-sensitivity to initial state).
A policy P is k-hit-sensitive with subtractive constant c, short (k, c)-hit-sensitive, if

hP (q, s) ≥ k · hP (q′, s)− c
for all access sequences s ∈ S and all cache-set states q, q′ ∈ CP .

Policy P will induce at least k times the number of hits minus constant c on any access
sequence starting in state q instead of state q′.
As in relative competitiveness, we sometimes say that a policy is k-sensitive without
specifying an appropriate additive (subtractive) constant. In such cases, we implicitly
demand that such a constant exists. The following definition is an example of such a
case:

Definition 7.3 (Sensitive ratio).
The sensitive miss and hit ratios smP and shP of P are defined as

smP = inf {k | P is k-miss-sensitive}
and shP = sup {k | P is k-hit-sensitive} .

Our focus will be on computing these sensitive ratios and appropriate additive (subtrac-
tive) constants. As the competitive ratio is the best characterization of a policy’s relative
competitiveness, the sensitive ratio is the best characterization of a policy’s sensitivity.
Every policy is by definition 0-hit-sensitive. However, a policy may not be k-miss-
sensitive for any k. In that case, we will call it ∞-miss-sensitive. For a policy P that is
∞-miss-sensitive, the number of misses incurred in P in state q cannot be bounded by
the number of misses starting in another state q′.

Lifting Sensitivity Results to Set-Associative Caches

The sensitivity definitions talk about the number of hits and misses in individual cache
sets2. It is, however, easy to lift the sensitivity results to entire set-associative caches:
One simply needs to multiply the additive (subtractive) constant by the number of cache
sets. The factor k is not affected.

7.3 Computing Sensitive Ratios

We have described the computation of relative competitive ratios in Chapter 6. Sensitive
ratios can be obtained in a very similar way. Differences arise when building the quotient

2An individual cache set can also be considered to be a fully-associative cache.

114

7.3. COMPUTING SENSITIVE RATIOS

transition system. In contrast to the competitiveness case, we do not only have to
consider compatible states. Instead, all pairs of states q, q′ ∈ CP must be handled. This
currently limits our approach to associativities smaller than 9.

7.3.1 Induced Transition System

As in the case of relative competitiveness, the policy P induces a transition system. Hit-
and miss-sensitivity are properties of this system.

Definition 7.4 (Induced transition system).
A policy P induces a labelled transition system TP = (SP , RP), where

SP =
{

(q, q′) | q ∈ CP , q′ ∈ CP
}

= CP × CP ,

the states, are pairs of cache set states of policy P .

RP = {((p, q), (mp,mq), (p
′, q′)) | (p, q) ∈ SP , a ∈M,

(p′, q′) = (updateP (p, 〈a〉), updateP (q, 〈a〉)),
(mp,mq) = (mP (p, 〈a〉),mP (q, 〈a〉))}

is the transition relation. Transitions are labelled with the number of misses (0 or 1)
incurred by the accesses in the two cache set states, respectively.

In contrast to SP,P in relative competitiveness, states in SP do not have to be compatible.
This yields a potentially much larger state space and less efficient analyses.
Sensitivity values depend on the number of misses (hits) on paths through the transition
system: The definitions of hit- and miss-sensitivity translate directly to properties of
paths (see Definition 6.14) of the induced transition system. A policy P is k-miss-
sensitive with additive constant c, iff∑

i

π(i)|1 ≤ k ·
∑
i

π(i)|2 + c for every path π ∈ Π(TP),

where |1 and |2 select the first and second component of a tuple, respectively. Likewise,
a policy P is k-hit-sensitive with subtractive constant c, iff(∑

i

1− π(i)|1

)
≥ k ·

(∑
i

1− π(i)|2

)
− c for every path π ∈ Π(TP).

7.3.2 Quotient Transition System

The relation ≈ of Definition 6.15 can be used to partition the states of SP into equiva-
lence classes as in the case of relative competitiveness. This induces the finite quotient
transition system T P = (SP , RP) = TP/≈.
The sensitive analysis can be performed on the quotient system:

115

CHAPTER 7. SENSITIVITY OF REPLACEMENT POLICIES

Theorem 7.5 (Path equivalence). The transition systems TP and T P are path equiva-
lent, i.e., Π(TP) = Π(T P).

Proof. The proof carries over directly from the proof of Theorem 6.17.

Building the Quotient Transition System

The only difference to the computation of relative competitive ratios lies in the con-
struction of the quotient transition system. Algorithm 2 consists of two steps: The
computation of SP and the computation of RP .
To compute SP , the algorithm proceeds by taking a yet unprocessed normalized state
from the Unprocessed queue and by computing all its normalized successor states until
all states have been processed. It starts with the pair of compatible states (iP , iQ).
Instead of computing successors under the same accesses only, we have to take into
account arbitrary uncorrelated accesses to both cache-set states. Pairs of cache-set
states are normalized by Normalize(p, q) as described in Section 6.3.2.
Note that for a fixed a, Normalize(updateP (p, 〈a〉), updateQ(q, 〈b〉)) yields≈-equivalent
states for all b ∈ CCP (p) ∪ CCQ(q) ∪ {a}. Similarly, ≈-equivalent states arise for a fixed
b in Normalize(updateP (p, 〈a〉), updateQ(q, 〈b〉)), for all a ∈ CCP (p) ∪ CCQ(q) ∪ {b}.
Therefore, it suffices to consider the following five cases of access pairs (a, b), which are
implicitly covered by the algorithm:

1. (a, b) ∈ (CCP (p) ∪ CCP (q))× (CCP (p) ∪ CCP (q)).

2. (a, b) ∈ (CCP (p) ∪ CCP (q))× {m1}.
3. (a, b) ∈ {m1} × (CCP (p) ∪ CCP (q)).

4. (a, b) = (m1,m1).

5. (a, b) = (m1,m2).
where m1 ∈ CCP (p) ∪ CCP (q) and m2 ∈ CCP (p) ∪ CCP (q) ∪ {m1}.
Once SP has been computed, RP can be computed as in the case of relative competiti-
veness.

7.3.3 Computation of Sensitive Ratios

Once we have built up the quotient transition system, determining the minimal k such
that P is miss-sensitive amounts to computing the maximum cycle ratio [Lawler, 1966,
Ahuja et al., 1993].

Theorem 7.6 (Maximum cycle ratio). The maximum cycle ratio k of T P , where the
cost associated with a transition is the number of misses incurred in the first component
and the associated travel time is the number of misses incurred in the second component,
is equal to the sensitive miss ratio of P .

Proof. The proof of carries over directly from the proof of Theorem 6.20.

116

7.3. COMPUTING SENSITIVE RATIOS

Algorithm 2: Building Quotient Transition System
Input: Policy P
Output: Quotient Transition System T P = (SP , RP)
begin

SP ← {Normalize(iP , iP)}
Unprocessed← [Normalize(iP , iP)]
while ¬Empty(Unprocessed) do

(p, q)← Pop(Unprocessed)
m1 ← SelectOne(CCP (p) ∪ CCP (q))
m2 ← SelectOne(CCP (p) ∪ CCP (q) ∪ {m1})
foreach a ∈ CCP (p) ∪ CCP (q) ∪ {m1} do

p′ ← updateP (p, 〈a〉)
foreach b ∈ CCP (p) ∪ CCP (q) ∪ {m1,m2} do

(p′, q′)← Normalize(p′, updateP (q, 〈b〉))
if (p′, q′) 6∈ SP then

Push(Unprocessed, (p′, q′))
SP ← SP ∪ {(p′, q′)}

RP ← ∅
foreach (p, q) ∈ SP do

foreach a ∈ CCP (p) ∪ CCP (q) ∪ {SelectOne(CCP (p) ∪ CCP (q))} do
(p′, q′)← Normalize(updateP (p, 〈a〉), updateP (q, 〈a〉))
(mp,mq)← (mP (p, 〈a〉),mP (q, 〈a〉))
RP ← RP ∪ {((p, q), (mp,mq), (p

′, q′))}
end

117

CHAPTER 7. SENSITIVITY OF REPLACEMENT POLICIES

Similarly, the sensitive hit ratio of P is the minimum cycle ratio of T P , where the
cost associated with a transition is the number of hits in the first component and the
associated travel time is the number of hits in the second component.

7.4 Results

Running our tool on a Core 2 Duo E6750 at 2.66GHz with 2GB of RAM, we have
obtained sensitivity results for LRU, FIFO, PLRU, and MRU at associativities ranging
from 2 to 8. To avoid any paging activity, we have limited the heap space to be allocated
by our tool to 1.5GB. If the computation required more than 30 minutes or exceeded the
heap space limit of 1.5GB, we report MEM or TIME, respectively. Note that we have
computed the precise sensitive ratios not just upper bounds. I.e. there are arbitrarily
long access sequences and pairs of initial states that exhibit the computed hit and miss
ratios.
Figure 7.1(a) depicts our results for the miss-sensitivity of LRU, FIFO, and PLRU.
results for LRU, FIFO, MRU PLRU, and OPT at associativities ranging from 2
to 8. LRU is very insensitive to its state. The difference in misses is bounded by
the associativity k. This is unavoidable for any policy, as the initial states may have
completely disjoint contents. FIFO, MRU, and PLRU are much more sensitive to their
state than LRU.
For the analyzed associativities, depending on their state, FIFO(k) may have up to
k times as many misses, and MRU(k) may have up to 2k − 3 times as many misses.
PLRU(2) coincides with LRU(2). For greater associativities, the number of misses
incurred starting in one state cannot be bounded by the number of misses incurred
starting in another state. Of course, the number of misses is always bounded by the
length of the access sequence. However, given only the number of misses and not the
length of the sequence no bound can be given.
As the number of misses may only differ by a constant for LRU, the number of hits may
only differ by the same constant. For FIFO, the situation is different: no lower bound on
the number of hits can be given for one state, given the number of hits in another state.
The same holds for MRU(k), if k > 2. For associativity k = 2, MRU(k), LRU(k),
and PLRU(k) coincide. The results for PLRU are only slightly more encouraging than
in the miss-sensitivity case. At associativity 8, a sequence may cause only 1/11 of the
number of hits starting in one state that it would cause starting in another state. See
Figure 7.1(b) for the analysis results.
Summarizing, FIFO, MRU, and PLRU may in the worst-case be heavily influenced by
the starting state. LRU is very robust, in that the number of hits and misses is affected
in the least possible way.

118

7.4. RESULTS

2 3 4 5 6 7 8
LRU 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

FIFO 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8
PLRU 1, 2 − ∞ − − − ∞
MRU 1, 2 3, 4 5, 6 7, 8 MEM MEM MEM

(a) Miss-Sensitive ratio, k, and additive constant, c, for LRU, FIFO,
PLRU, and MRU.

2 3 4 5 6 7 8
LRU 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

FIFO 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
PLRU 1, 2 − 1

3
, 5

3
− − − 1

11
, 19

11

MRU 1, 2 0, 0 0, 0 0, 0 MEM MEM MEM
(b) Hit-Sensitive ratio, k, and subtractive constant, c, for LRU, FIFO,
PLRU, and MRU.

Figure 7.1: Miss- and Hit-Sensitivity Results. As an example of how this should be read,
PLRU(4) is (1

3
, 5

3
)-hit-sensitive with subtractive constant . ∞ indicates that

a policy is not k-miss-sensitive for any k. PLRU is only defined for powers
of two.

Is the Empty Cache the Worst-Case Initial State?

One could argue that it is still safe to assume an empty cache or equivalently a cache
filled with irrelevant data only as the starting state [Petters, 2002, page 39ff], assuming
that an empty cache were worse than any non-empty cache. This is not true for FIFO,
MRU, and PLRU. We have performed a second analysis that fixed the reference starting
state (q′ in the definitions) to be empty. The analysis revealed the same sensitive ratios
as in the general case with all additive (subtractive) constants being zero. For LRU, this
is in fact a positive result, as it confirms that the empty cache is indeed the worst-case
for any access sequence.
This is the example produced by the tool for the miss-sensitivity of FIFO(4):

Example (Miss-sensitivity of FIFO(4)).
Consider the pair of cache-set states [b, c, d, e]FIFO, [⊥,⊥,⊥,⊥]FIFO.
The sequence 〈d, e, a, b〉 leads it to the pair [a, b, c, d]FIFO, [b, a, e, d]FIFO:

[b, c, d, e], [⊥,⊥,⊥,⊥]
d−→ [b, c, d, e], [d,⊥,⊥,⊥]

e−→ [b, c, d, e], [e, d,⊥,⊥]
a−→ [a, b, c, d], [a, e, d,⊥]

b−→ [a, b, c, d], [b, a, e, d]

Now, consider the access sequence 〈e, d, f, b〉, which leads the pair into the ≈-equivalent
pair [b, f, d, e]FIFO, [f, b, a, e]FIFO:

[a, b, c, d], [b, a, e, d]
e−→ [e, a, b, c], [b, a, e, d]

d−→ [d, e, a, b], [b, a, e, d]
f−→ [f, d, e, a], [f, b, a, e]

b−→ [b, f, d, e], [f, b, a, e]

119

CHAPTER 7. SENSITIVITY OF REPLACEMENT POLICIES

The state that originated from the empty state [⊥,⊥,⊥,⊥]FIFO incurs only one miss on
this sequence, while the other state misses in each of the four accesses. As the resulting
states are ≈-equivalent there is another sequence that will show the same behavior in the
two states and so on.

It has been observed earlier [Berg, 2006], that the empty cache is not necessarily the
worst-case starting state for PLRU. Our work demonstrates to what extent it may be
better than the real worst-case initial state in the case of FIFO, MRU, and PLRU. It
turns out that except for the additive (subtractive) constant, starting with an empty
cache may be as bad as starting in any other state.

Pathological Cases?

Of course, it is not very likely to start measurements in a state that minimizes the number
of misses for the following access sequence. Yet, it is difficult to associate a particular
probability with this event. One should also realize that many states in between the
worst- and the best-case (i.e. even if one does not start in the state that minimizes the
number of misses) may still perform significantly better than the worst-case initial state.

7.5 Impact of Results on Timing Analysis

To illustrate on a simplified scenario the impact of the sensitivity results on measured ex-
ecution times, we adopt a simple model of execution time in terms of cache performance
of [Hennessy and Patterson, 2003]. In this model, the execution time is the product of
the clock cycle time and the sum of the CPU cycles (the pure processing time) and the
memory stall cycles:

Exec. time = (CPU cycles + Memory stall cycles)× Clock cycle

The equation makes the simplifying assumption that the CPU is stalled during a cache
miss. Furthermore, it assumes that the CPU clock cycles include the time to handle
cache hits.
Let CPIhit be the average number of cycles per instruction if no cache misses occur.
Then, the CPU cycles are simply a product of the number of instructions IC and CPIhit:

CPU cycles = IC×CPIhit

The number of memory stall cycles depends on the number of instructions IC, the
number of misses per instruction and the cost per miss, the miss penalty:

Memory stall cycles = Number of misses×Miss penalty

= IC× Misses

Instruction
×Miss penalty

= IC×Memory accesses

Instruction
×Miss rate×Miss penalty

120

7.6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Now assume we have measured an execution time of Tmeas in a system with a 4-way set-
associative FIFO cache. By which factor may the “real” worst-case execution time Twc
differ from Tmeas due to different initial states of the cache? Let the number of memory
accesses per instruction be 1.23 and let the miss penalty be 50. Due to pipeline stalls let
the CPIhit be 1.5. Further assume, the miss rate Miss ratemeas during the measurement
was 5%. The sensitive miss-ratio of FIFO(4) is 4. Neglecting the additive constant,
the worst-case miss rate Miss ratewc could thus be as high as 20%. Plugging the above
assumptions into the equations and simplification yields

Twc
Tmeas

=
CPIhit +Memory accesses

Instruction
×Miss ratewc×Miss penalty

CPIhit +Memory accesses
Instruction

×Miss ratemeas×Miss penalty

= 1.5+1.2×0.20×50
1.5+1.2×0.05×50

= 13.5
4.5

= 3

So, in the example of a 4-way set-associative FIFO cache, the worst-case execution time
may be a factor of 3 higher than the measured time only due to the influence of the initial
cache state. If PLRU or MRU were used as a replacement policy the difference could
be even greater. As measurement usually does not allow to determine the miss rate (or
simply the number of misses) it is not even possible to add a conservative overhead to
the measured execution times to account for the sensitivity to the initial state.
The above analysis considers the impact of cache sensitivity on an individual mea-
surement. Measurement-based timing analysis as described in the literature [Petters,
2002, Bernat et al., 2002,Wenzel, 2006, Deverge and Puaut, 2005] does not advocate
end-to-end measurements. Instead, measurements of program fragments are performed
and later combined to obtain an estimate of the worst-case execution time of the whole
program. The above arguments apply to any of the measurements of program fragments.
If the measurement of an important fragment like the body of an inner loop is far off,
the estimate for the whole program will as a consequence be far off as well.

7.6 Summary, Conclusions, and Future Work

We have introduced a notion of sensitivity of cache replacement policies that captures
the influence of the initial state of the cache on the future cache performance. Employing
techniques described in Chapter 6 allows to compute sensitive ratios of a large class of
replacement policies, including the well-known and widely-used families of replacement
policies, LRU, FIFO, MRU, and PLRU.
The analysis results revealed great differences among LRU, FIFO, and PLRU, that yield
another argument in favor of using LRU in the design of predictable real-time systems.
In the case of FIFO, MRU, and PLRU, the initial state can have a great influence on the
number of hits and misses during program execution. A simple model of execution time
demonstrates the impact of cache sensitivity on measured execution times. It shows that
underestimating the number of misses as strongly as is possible for FIFO, MRU, and

3Each instruction causes one instruction fetch and possibly data fetches.

121

CHAPTER 7. SENSITIVITY OF REPLACEMENT POLICIES

PLRU yields worst-case-execution-time estimates that are dramatically wrong. Further
analysis revealed that the “empty cache is worst-case initial state” assumption [Petters,
2002] is wrong for FIFO, MRU, and PLRU.
To obtain safe results by measurement with respect to cache performance the cache
contents should be locked as proposed in [Deverge and Puaut, 2005,Wenzel, 2006,Vera
et al., 2003,Puaut and Decotigny, 2002], which may have an adverse effect on average-
and worst-case execution time.
Our study of predictability of the above policies in Chapter 5 provides limits on the
precision of static cache analyses. In contrast to measurement, static analysis can al-
ways compute correct approximations. However, for those policies that are particularly
sensitive to the initial state, soundness comes at a price: their precision is limited for
FIFO, MRU, and PLRU. In contrast, static analyses can be very precise for LRU,
which is least sensitive.
Our results hold for arbitrary access sequences. Therefore, they hold for any program.
Many programs do not exhibit the worst-case cache behavior. By restricting the possible
access sequences it would be possible to obtain smaller sensitive ratios for particular
programs. However, computing precise sensitive ratios in such restricted scenarios is
more difficult than in the present case as we cannot compute a quotient transition
system in a similar way. States that are equivalent in the current setting may not be
equivalent if memory accesses are restricted in some way.

122

8
Summary, Conclusions,

and Future Work

An important part in the design of hard real-time systems is the proof of timeliness,
which is determined by the worst-case performance of the system. Performance boosting
components like caches have an increasing impact on both the average- and the worst-
case performance. WCET analyses need to account for the cache behavior in a sound
and precise way. Sound and precise may and must cache analyses are known for LRU.
Prior to our work, only imprecise must analyses were known for other policies, like FIFO
and PLRU. It was unclear whether more precise analyses were yet to be discovered or
whether these policies simply do not permit greater precision.

8.1 Summary of Contributions

Predictability Metrics

We have introduced predictability metrics that capture how quickly cache analyses can
obtain may- and must-information under a replacement policy. The metrics are inde-
pendent of any particular cache analysis. They mark a limit on the precision of any
cache analysis. Under these metrics, LRU is optimal, i.e., may- and must-information
can be obtained in the least possible number of memory accesses. PLRU, MRU, and
FIFO perform considerably worse. Compared to an 8-way LRU, it takes more than
twice as many accesses to regain complete must-information for equally-sized PLRU,
MRU, and FIFO caches. As a consequence, it is impossible to construct cache analyses
for PLRU, MRU, and FIFO that are as precise as known LRU analyses.

Relative Competitiveness

Given the limits imposed by the predictability metrics, there was still potential for
improvement in the known analyses for MRU, FIFO, etc. We have slightly generalized
the notion of competitiveness to that of relative competitiveness. Relative competitive
ratios bound the performance of a policy P relative to the performance of another

123

CHAPTER 8. SUMMARY, CONCLUSIONS, AND FUTURE WORK

policy Q. In the special case of (1, 0)-competitiveness, a sound may analysis for P is also
a soundmay analysis forQ, and a soundmust analysis forQ is also a soundmust analysis
for P . By constructing a finite quotient structure of the transition system induced by a
pair of policies, we are able to compute competitive ratios automatically. We generalized
a number of automatically computed relations to arbitrary associativities. This includes
the (1, 0)-competitiveness of LRU(2k − 1) and LRU(2k − 2) relative to FIFO(k) and
MRU(k), respectively, which yield the first may analyses for FIFO and MRU. Notably,
these analyses are optimal with respect to the predictability metric evict. The (1, 0)-
competitiveness of PLRU(k) relative to LRU(log2 k + 1) concisely explains an existing
PLRU analysis of [Heckmann et al., 2003].

Sensitivity of Replacement Policies

Measurement has been proposed as an alternative to static analysis in WCET analysis.
The advantage of measurement over static analysis is that it is more easily portable to
new architectures, as it does not rely on an abstract model of the architecture. However,
its soundness suffers from non-determinism in timing introduced by caches and other
performance-enhancing features. To evaluate the influence of the initial state of the
cache on the future cache performance and thus the soundness of measurement-based
timing analysis, we have introduced the notion of sensitivity of a cache replacement
policy. Sensitive ratios can be computed automatically similarly to competitive ratios.
Analysis reveals that for FIFO, MRU, and PLRU, measurement may strongly under-
estimate the worst-case number of misses. This may yield WCET estimates that are
dramatically wrong. In contrast, LRU is as insensitive to the initial state as possible
for any replacement policy.

8.2 Conclusions

Concluding, it is recommended to employ LRU replacement in hard-real time systems.
Static timing analysis will benefit in the form of high precision, while measurement-
based timing analysis may become sound – at least with respect to cache behavior. If
the use of FIFO, PLRU, or MRU is unavoidable, static analyses can benefit from our
relative competitiveness results and the induced may and must analyses. In such cases,
measurement-based timing analysis is not recommendable, as it may be dramatically
wrong.

124

8.3. FUTURE WORK

8.3 Future Work

The three studies presented in this thesis have been based on purely worst-case assump-
tions. It would be interesting to examine real software for hard real-time systems and
answer the two related questions in such a scenario:

1. How great is the inherent uncertainty about the cache behavior?

2. How strong is the influence of the initial state on the cache performance?
Even for small programs these questions are very difficult to answer precisely, as the
collecting cache semantics is in general uncomputable. Other properties of caches like
the block size, the write policy, and the allocation policy could also be taken into account
in such a study as they have some impact on cache predictability as well.
Static cache analyses have to join abstract states where control-flow merges. Information
loss through joins accounts for part of the uncertainty in cache analysis. However, its
extent depends on the particular abstract domain. Can we still somehow argue about
it in a domain-independent fashion as in the predictability metrics? If not, what are
reasonable assumptions about abstract domains used in practice?
The advent of multi-core architectures in embedded systems seems to be inevitable. The
memory architecture of such systems has to be designed very carefully to enable sound
and precise cache analyses. Unrestricted sharing of caches would likely make cache ana-
lysis impossible. What is a good compromise between sharing resources for performance
and limiting interferences between different cores and tasks for predictability?

125

Bibliography

[Ackland et al., 2000] Ackland, B., Anesko, D., Brinthaupt, D., Daubert, S. J.,
Kalavade, A., Knoblock, J., Micca, E., Moturi, M., Nicol, C. J., O’Neill, J. H., Oth-
mer, J., Sackinger, E., Singh, K. J., Sweet, J., Terman, C. J., and Williams, J. (2000).
A single-chip, 1.6 billion, 16-b mac/s multiprocessor dsp,. IEEE Journal of Solid-state
circuits, 35(3):412–423.

[Ahuja et al., 1993] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network
flows: theory, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

[Al-Zoubi et al., 2004] Al-Zoubi, H., Milenkovic, A., and Milenkovic, M. (2004). Perfor-
mance evaluation of cache replacement policies for the SPEC CPU2000 benchmark
suite. In ACM-SE 42: Proceedings of the 42nd annual Southeast regional conference,
pages 267–272, New York, NY, USA. ACM Press.

[Aspnes and Waarts, 1996] Aspnes, J. and Waarts, O. (1996). Modular competitiveness
for distributed algorithms. In STOC ’96: Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 237–246, New York, NY, USA. ACM
Press.

[Belady, 1966] Belady, L. (1966). A study of replacement algorithms for a virtual storage
computer. IBM Systems Journal, 5:78–101.

[Berg, 2006] Berg, C. (2006). PLRU cache domino effects. In WCET ’06: 6th Intl.
Workshop on Worst-Case Execution Time Analysis. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[Bermudo et al., 2000] Bermudo, N., Vera, X., González, A., and Llosa, J. (2000). Opti-
mizing cache miss equations polyhedra. SIGARCH Comput. Archit. News, 28(1):43–
52.

[Bernat et al., 2002] Bernat, G., Colin, A., and Petters, S. M. (2002). WCET analysis
of probabilistic hard real-time systems. In RTSS ’02: Proceedings of the 23rd IEEE
Real-Time Systems Symposium, page 279, Washington, DC, USA. IEEE Computer
Society.

[Chatterjee et al., 2001] Chatterjee, S., Parker, E., Hanlon, P. J., and Lebeck, A. R.
(2001). Exact analysis of the cache behavior of nested loops. In PLDI ’01: Proceed-
ings of the ACM SIGPLAN 2001 conference on Programming language design and
implementation, pages 286–297, New York, NY, USA. ACM Press.

[Cousot and Cousot, 1976] Cousot, P. and Cousot, R. (1976). Static determination of
dynamic properties of programs. In Proceedings of the Second International Sympo-
sium on Programming, pages 106–130. Dunod, Paris, France.

127

Bibliography

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract interpretation:
a unified lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238–252, New York, NY,
USA. ACM Press.

[Deverge and Puaut, 2005] Deverge, J.-F. and Puaut, I. (2005). Safe measurement-
based WCET estimation. In WCET ’05: Proceedings of 5th Intl. Workshop on Worst-
Case Execution Time Analysis, Dagstuhl, Germany. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[Ferdinand, 1997] Ferdinand, C. (1997). Cache Behaviour Prediction for Real-Time Sys-
tems. PhD thesis, Saarland University.

[Ferdinand et al., 2001] Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F.,
Schmidt, M., Theiling, H., Thesing, S., and Wilhelm, R. (2001). Reliable and pre-
cise WCET determination for a real-life processor. In Embedded Software Workshop,
volume 2211, pages 469 – 485, Lake Tahoe, USA.

[Ferdinand et al., 1999] Ferdinand, C., Kästner, D., Langenbach, M., Martin, F.,
Schmidt, M., Schneider, J., Theiling, H., Thesing, S., and Wilhelm, R. (1999). Run-
time guarantees for real-time systems — the USES approach. In Proceedings of In-
formatik ’99 – Arbeitstagung Programmiersprachen, Paderborn.

[Ferdinand et al., 1997] Ferdinand, C., Martin, F., and Wilhelm, R. (1997). Applying
compiler techniques to cache behavior prediction. In LCTRTS ’97: Proceedings of
the ACM SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time
Systems, pages 37–46, Las Vegas, Nevada. ACM SIGPLAN.

[Ferdinand and Wilhelm, 1999] Ferdinand, C. and Wilhelm, R. (1999). Efficient and
precise cache behavior prediction for real-time systems. Real-Time Systems, 17(2-
3):131–181.

[Fraguela et al., 1999] Fraguela, B. B., Doallo, R., and Zapata, E. L. (1999). Automatic
analytical modeling for the estimation of cache misses. In PACT ’99: Proceedings of
the 1999 International Conference on Parallel Architectures and Compilation Tech-
niques, page 221, Washington, DC, USA. IEEE Computer Society.

[Freescale Semiconductor Inc., 2002] Freescale Semiconductor Inc. (2002). MPC750
RISC Microprocessor User Manual, Section 3.5.1. http://www.freescale.com/
files/32bit/doc/ref_manual/MPC750UM.pdf.

[Gebhard and Altmeyer, 2007] Gebhard, G. and Altmeyer, S. (2007). Optimal task
placement to improve cache performance. In EMSOFT ’07: Proceedings of the 7th
ACM & IEEE international conference on Embedded software, pages 259–268, New
York, NY, USA. ACM.

[Ghosh et al., 1997] Ghosh, S., Martonosi, M., and Malik, S. (1997). Cache miss equa-
tions: an analytical representation of cache misses. In ICS ’97: Proceedings of the 11th
International Conference on Supercomputing, pages 317–324, New York, NY, USA.
ACM Press.

128

Bibliography

[Ghosh et al., 1998] Ghosh, S., Martonosi, M., and Malik, S. (1998). Precise miss ana-
lysis for program transformations with caches of arbitrary associativity. In ASPLOS-
VIII: Proceedings of the eighth international conference on Architectural support for
programming languages and operating systems, pages 228–239, New York, NY, USA.
ACM Press.

[Ghosh et al., 1999] Ghosh, S., Martonosi, M., and Malik, S. (1999). Cache miss equa-
tions: a compiler framework for analyzing and tuning memory behavior. ACM Trans.
Program. Lang. Syst., 21(4):703–746.

[Grund et al., 2008] Grund, D., Gebhard, G., and Reineke, J. (2008). Timing analysis
and predictability of a branch target buffer. (to be submitted).

[Grund and Reineke, 2008] Grund, D. and Reineke, J. (2008). Estimating the perfor-
mance of cache replacement policies. In MEMOCODE ’08: Proceedings of the 6th
IEEE/ACM International Conference on Formal Methods and Models for Codesign,
pages 101–111.

[Heckmann et al., 2003] Heckmann, R., Langenbach, M., Thesing, S., and Wilhelm, R.
(2003). The influence of processor architecture on the design and the results of WCET
tools. Proceedings of the IEEE, 91(7):1038–1054.

[Hennessy and Patterson, 2003] Hennessy, J. L. and Patterson, D. A. (2003). Computer
Architecture: A Quantitative Approach, 3rd Edition. Morgan Kaufmann.

[Hergenhan and Rosenstiel, 2000] Hergenhan, A. and Rosenstiel, W. (2000). Static tim-
ing analysis of embedded software on advanced processor architectures. In DATE
’00: Proceedings of the Conference on Design, Automation and Test in Europe, pages
552–559, New York, NY, USA. ACM Press.

[Jacob et al., 2007] Jacob, B., Ng, S. W., and Wang, D. T. (2007). Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers.

[Kam and Ullman, 1977] Kam, J. B. and Ullman, J. D. (1977). Monotone data flow
analysis frameworks. Acta Inf., 7:305–317.

[Kildall, 1973] Kildall, G. A. (1973). A unified approach to global program optimization.
In POPL ’73: Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 194–206, New York, NY, USA. ACM.

[Koutsoupias and Papadimitriou, 1994] Koutsoupias, E. and Papadimitriou, C. H.
(1994). Beyond competitive analysis. In FOCS ’94: Proceedings of the IEEE Sympo-
sium on Foundations of Computer Science, pages 394–400.

[Langenbach et al., 2002] Langenbach, M., Thesing, S., and Heckmann, R. (2002).
Pipeline modeling for timing analysis. In SAS ’02: Proceedings of the Static Ana-
lyses Symposium, volume 2477, Madrid, Spain.

[Lawler, 1966] Lawler, E. (1966). Optimal cycles in doubly weighted linear graphs. In
Int’l Symp. Theory of Graphs, pages 209–213.

[Li et al., 1996] Li, Y.-T. S., Malik, S., and Wolfe, A. (1996). Cache modeling for real-
time software: beyond direct mapped instruction caches. In RTSS ’96: Proceedings

129

Bibliography

of the 17th IEEE Real-Time Systems Symposium (RTSS ’96), page 254, Washington,
DC, USA. IEEE Computer Society.

[Lundqvist and Stenström, 1999] Lundqvist, T. and Stenström, P. (1999). Timing
anomalies in dynamically scheduled microprocessors. In RTSS ’99: Proceedings of the
20th IEEE Real-Time Systems Symposium, page 12, Washington, DC, USA. IEEE
Computer Society.

[Malamy et al., 1994] Malamy, A., Patel, R., and Hayes, N. (1994). Methods and ap-
paratus for implementing a pseudo-LRU cache memory replacement scheme with a
locking feature. United States Patent 5029072.

[Mattson et al., 1970] Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L. (1970).
Evaluation techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117.

[Mueller et al., 1994] Mueller, F., Whalley, D. B., and Harmon, M. (1994). Predicting
instruction cache behavior. In LCTRTS ’94: Proceedings of the ACM SIGPLAN
Workshop on Language, Compiler, and Tool Support for Real-Time Systems.

[Nielson et al., 1999] Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Peir et al., 1998] Peir, J., Hsu, W. W., and Smith, A. J. (1998). Implementation issues
in modern cache memory. Technical report, University of California at Berkeley,
Berkeley, CA, USA.

[Petters, 2002] Petters, S. M. (2002). Worst Case Execution Time Estimation for Ad-
vanced Processor Architectures. PhD thesis, Technische Universität München, Munich,
Germany.

[Puaut and Decotigny, 2002] Puaut, I. and Decotigny, D. (2002). Low-complexity algo-
rithms for static cache locking in multitasking hard real-time systems. In RTSS ’02:
Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02), page 114,
Washington, DC, USA. IEEE Computer Society.

[Ramaprasad and Mueller, 2005] Ramaprasad, H. and Mueller, F. (2005). Bounding
worst-case data cache behavior by analytically deriving cache reference patterns. In
RTAS ’05: Proceedings of the 11th IEEE Real Time on Embedded Technology and
Applications Symposium, pages 148–157, Washington, DC, USA. IEEE Computer
Society.

[Reineke and Grund, 2008a] Reineke, J. and Grund, D. (2008a). Relative competitive
analysis of cache replacement policies. In LCTES ’08: Proceedings of the 2008 ACM
SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded sys-
tems, pages 51–60, New York, NY, USA. ACM.

[Reineke and Grund, 2008b] Reineke, J. and Grund, D. (2008b). Relative competitive-
ness of cache replacement policies. In SIGMETRICS ’08: Proceedings of the 2008
ACM SIGMETRICS international conference on Measurement and modeling of com-
puter systems, pages 431–432, New York, NY, USA. ACM.

130

Bibliography

[Reineke et al., 2007] Reineke, J., Grund, D., Berg, C., and Wilhelm, R. (2007). Timing
predictability of cache replacement policies. Real-Time Systems, 37(2):99–122.

[Reineke et al., 2006] Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I.,
Eisinger, J., and Becker, B. (2006). A definition and classification of timing anomalies.
In WCET ’06: Proceedings of 6th International Workshop on Worst-Case Execution
Time Analysis.

[Roy, 2007] Roy, B. V. (2007). A short proof of optimality for the min cache replacement
algorithm. Inf. Process. Lett., 102(2-3):72–73.

[Schlickling and Pister, 2007] Schlickling, M. and Pister, M. (2007). A framework for
static analysis of VHDL code. In WCET ’07: Proceedings of 7th International Work-
shop on Worst-Case Execution Time (WCET) Analysis.

[Sen and Srikant, 2007] Sen, R. and Srikant, Y. N. (2007). WCET estimation for exe-
cutables in the presence of data caches. In EMSOFT ’07: Proceedings of the 7th ACM
& IEEE international conference on Embedded software, pages 203–212, New York,
NY, USA. ACM.

[Sleator and Tarjan, 1985] Sleator, D. D. and Tarjan, R. E. (1985). Amortized efficiency
of list update and paging rules. Commun. ACM, 28(2):202–208.

[Smaragdakis, 2004] Smaragdakis, Y. (2004). General adaptive replacement policies. In
ISMM ’04: Proceedings of the 4th international symposium on Memory management,
pages 108–119, New York, NY, USA. ACM.

[Smaragdakis et al., 2003] Smaragdakis, Y., Kaplan, S., and Wilson, P. (2003). The
EELRU adaptive replacement algorithm. Perform. Eval., 53(2):93–123.

[Sudarshan et al., 2004] Sudarshan, T., Mir, R. A., and Vijayalakshmi, S. (2004). Highly
efficient lru implementations for high associativity cache memory. In ICACC 04:
Proceedings of the 12th IEEE International Conference on Advanced Computing and
Communications, pages 87–95, Ahemdabad, Gujarat, India. Allied Publishers Pvt.
Ltd.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applica-
tions. Pac. J. Math., 5:285–309.

[Theiling, 2003] Theiling, H. (2003). Control Flow Graphs for Real-Time System Ana-
lysis. PhD thesis, Saarland University.

[Theiling et al., 2000] Theiling, H., Ferdinand, C., and Wilhelm, R. (2000). Fast and
precise WCET prediction by separate cache and path analyses. Real-Time Systems,
18(2/3).

[Thesing, 2004] Thesing, S. (2004). Safe and Precise WCET Determination by Abstract
Interpretation of Pipeline Models. PhD thesis, Saarland University.

[Thiele and Wilhelm, 2004] Thiele, L. and Wilhelm, R. (2004). Design for timing pre-
dictability. Real-Time Systems, 28(2-3):157–177.

131

Bibliography

[Vera et al., 2003] Vera, X., Lisper, B., and Xue, J. (2003). Data cache locking for higher
program predictability. SIGMETRICS Perform. Eval. Rev., 31(1):272–282.

[Vogler, 2008] Vogler, W. (2008). Another short proof of optimality for the min cache
replacement algorithm. Inf. Process. Lett., 106(5):219–220.

[Wenzel, 2006] Wenzel, I. (2006). Measurement-Based Timing Analysis of Superscalar
Processors. PhD thesis, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria.

[White et al., 1997] White, R. T., Healy, C. A., Whalley, D. B., Mueller, F., and Har-
mon, M. G. (1997). Timing analysis for data caches and set-associative caches. In
RTAS ’97: Proceedings of the 3rd IEEE Real-Time Technology and Applications Sym-
posium (RTAS ’97), page 192, Washington, DC, USA. IEEE Computer Society.

[Wilhelm et al., 2008] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing,
S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F.,
Puaut, I., Puschner, P., Staschulat, J., and Stenström, P. (2008). The worst-case
execution-time problem—overview of methods and survey of tools. Trans. on Embed-
ded Computing Sys., 7(3):1–53.

132

Index

≈-equivalent, 92
MEM, 102
TIME, 102

abstract domain, 35
abstract interpretation, 33–42
abstract semantics, 35–38

cache, 47
abstraction function, 36
access path, 72
access sequence, 30

pairwise different, 30, 62
address analysis, 44, 45
age, 23, 48
allocation policy

no write-allocate, 20
write-allocate, 20

associativity, 19
direct-mapped, 19
fully-associative, 19
set-associative, 19

block offset, 19

cache, 17–18
domains, 21–22, 30–31
miss penalty, 43

cache analysis, 43–58, 81
may, 12, 15, 46, 47, 87
must, 12, 15, 46, 47, 87
uncertainty, 45, 54, 61

cache set, 19
representation, 22

cache-set state, 21, 91
initial, 21
normalized, 72

collecting semantics, 33–34
path, 34
sticky, 34

abstract, 38
context-sensitive, 42

compatible states, 83
competitive ratio, 84
concrete semantics, 34

cache, 47
concretization function, 35, 48
control-flow graph, 33

data-flow analysis, 38–39

future constraints, 100

Galois connection, 36
Galois insertion, 36

hit-function, 31

inclusion property, 88
index, 19
invalidation, 30

locally consistent, 35
loop unrolling, 42, 54

maximum cycle ratio, 98, 116
may information, 12, 46, 61, 62
measurement-based timing analysis, 15,

111
memory block, 21, 22
MFP-solution, 39
minimum cycle ratio, 97, 98
miss replacement distance, 72
miss-function, 31
MOP-solution, 39
must information, 12, 46, 61, 62

path equivalence, 93, 116
path semantics, 34

abstract, 35
predictability metrics, 12, 59–80, 123

133

Index

FIFO, 66
LRU, 66
MRU, 68
PLRU, 71
evict, 14, 63, 87
fill, 14, 63
minimal life-span, see mls
mls, 64, 87

relative competitiveness, 14, 81–109, 123
FIFO, 102, 104, 138, 142
LRU, 102, 104, 137, 141
MRU, 102, 104, 139, 143
OPT, 100, 106
PLRU, 102, 104, 136, 140
definition, 83, 84

replacement policy, 12, 20, 21–30
FIFO, 14–16, 21, 24–25, 28
LRU, 14–16, 21, 23–24
MRU, 14–16, 21, 25
MRU-bits, 25

OPT, 15, 21, 22–23
PLRU, 14–16, 21, 26–27
tree-bits, 26

Pseudo-RR, 21, 27
round-robin, see FIFO

sensitive ratio, 114
sensitivity, 16, 111–122, 124

FIFO, 118
LRU, 118
MRU, 118
PLRU, 118
hit-, 114
miss-, 113

tag, 19
timing accident, 11
timing analysis, 120
timing penalty, 12
timing predictability, 59
total function space, 39
transformer

abstract, 35, 51
best, 36

concrete, 34, 47
transition system

induced, 90, 115
quotient, 92, 115

unique representatives, 96
update-function, 31, 101

value analysis, see address analysis

way, 19
worst-case execution time, 11
worst-case initial state, 119
write policy, 20

write-back, 20
write-through, 20

134

A
Relative Competitiveness Results

Running our tool on a Core 2 Duo E6750 at 2.66GHz with 2GB of RAM, we have
obtained a vast amount of competitiveness results for LRU, FIFO, MRU PLRU, and
OPT at associativities ranging from 2 to 8. To avoid any paging activity, we have limited
the heap space to be allocated by our tool to 1.5GB. If the computation required more
than 30 minutes or exceeded the heap space limit of 1.5GB, we report MEM or TIME,
respectively.

135

APPENDIX A. RELATIVE COMPETITIVENESS RESULTS

Miss-Competitiveness

PLRU
LRU 2 3 4 5 6 7 8

2 1, 0 ∞ ∞ ∞ ∞ ∞ ∞
4 1, 0 1, 0 ∞ ∞ ∞ ∞ ∞
8 1, 0 1, 0 1, 0 ∞ ∞ ∞ ∞

(a) Miss-Competitiveness: PLRU vs LRU

PLRU
FIFO 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
4 1, 0 2, 2 ∞ ∞ ∞ ∞ ∞
8 1, 0 4

3
, 1 2, 3 ∞ ∞ ∞ ∞

(b) Miss-Competitiveness: PLRU vs FIFO

PLRU
MRU 2 3 4 5 6 7 8

2 1, 0 ∞ ∞ ∞ ∞ ∞ ∞
4 1, 0 2, 1 ∞ ∞ ∞ ∞ ∞
8 1, 0 1, 0 2, 1 ∞ ∞ MEM MEM

(c) Miss-Competitiveness: PLRU vs MRU

PLRU
OPT 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
4 4

3
, 1 2, 2 ∞ ∞ ∞ ∞ ∞

8 8
7
, 1 MEM MEM MEM MEM MEM MEM
(d) Miss-Competitiveness: PLRU vs OPT

Figure A.1: Miss-Competitiveness results relating PLRU with LRU, FIFO, MRU, and
OPT. The first component of each cell denotes the competitive ratio of the
policy specified in the row relative to the policy specified in the column. The
second component shows the additive constant. As an example, PLRU(8)
is (4

3
, 1)-miss-competitive relative to FIFO(3).

136

LRU
FIFO 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
3 1, 0 3, 2 ∞ ∞ ∞ ∞ ∞
4 1, 0 2, 1 4, 3 ∞ ∞ ∞ ∞
5 1, 0 1, 0 2, 2 5, 4 ∞ ∞ ∞
6 1, 0 1, 0 2, 1 3, 3 6, 5 ∞ ∞
7 1, 0 1, 0 1, 0 2, 2 3, 4 7, 6 ∞
8 1, 0 1, 0 1, 0 2, 1 2, 3 4, 5 8, 7

(a) Miss-Competitiveness: LRU vs FIFO

LRU
MRU 2 3 4 5 6 7 8

2 1, 0 ∞ ∞ ∞ ∞ ∞ ∞
3 1, 0 2, 1 ∞ ∞ ∞ ∞ ∞
4 1, 0 1, 0 3, 2 ∞ ∞ ∞ ∞
5 1, 0 1, 0 3

2
, 1 4, 3 ∞ ∞ ∞

6 1, 0 1, 0 1, 0 2, 2 5, 4 ∞ ∞
7 1, 0 1, 0 1, 0 4

3
, 1 5

2
, 3 6, 5 ∞

8 1, 0 1, 0 1, 0 1, 0 5
3
, 2 3, 4 7, 6

(b) Miss-Competitiveness: LRU vs MRU

LRU
OPT 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
3 3

2
, 1 3, 2 ∞ ∞ ∞ ∞ ∞

4 4
3
, 1 2, 2 4, 3 ∞ ∞ ∞ ∞

5 5
4
, 1 5

3
, 2 5

2
, 3 5, 4 ∞ ∞ ∞

6 6
5
, 1 3

2
, 2 2, 3 MEM TIME ∞ ∞

7 7
6
, 1 7

5
, 2 MEM MEM MEM MEM ∞

8 8
7
, 1 MEM MEM MEM MEM MEM MEM
(c) Miss-Competitiveness: LRU vs OPT

LRU
PLRU 2 4 8

2 1, 0 ∞ ∞
3 1, 0 ∞ ∞
4 1, 0 2, 1 ∞
5 1, 0 3

2
, 1 ∞

6 1, 0 4
3
, 1 ∞

7 1, 0 5
4
, 1 ∞

8 1, 0 6
5
, 1 5, 4

(d) Miss-Competitiveness:
LRU vs PLRU

Figure A.2: Miss-Competitiveness results relating LRU with FIFO, MRU, OPT, and
PLRU. The first component of each cell denotes the competitive ratio of the
policy specified in the row relative to the policy specified in the column. The
second component shows the additive constant. As an example, LRU(6) is
(3, 3)-miss-competitive relative to FIFO(5).

137

APPENDIX A. RELATIVE COMPETITIVENESS RESULTS

FIFO
LRU 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
3 3

2
, 1 3, 2 ∞ ∞ ∞ ∞ ∞

4 4
3
, 1 2, 2 4, 3 ∞ ∞ ∞ ∞

5 5
4
, 1 5

3
, 2 5

2
, 3 5, 4 ∞ ∞ ∞

6 6
5
, 1 3

2
, 2 2, 3 3, 4 6, 5 ∞ ∞

7 7
6
, 1 7

5
, 2 7

4
, 3 7

3
, 4 7

2
, 5 7, 6 ∞

8 8
7
, 1 4

3
, 2 8

5
, 3 2, 4 8

3
, 5 4, 6 8, 7

(a) Miss-Competitiveness: FIFO vs LRU

FIFO
MRU 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
3 3

2
, 1 3, 3 ∞ ∞ ∞ ∞ ∞

4 4
3
, 1 2, 3 4, 4 ∞ ∞ ∞ ∞

5 5
4
, 1 5

3
, 3 5

2
, 4 5, 5 ∞ ∞ ∞

6 6
5
, 1 3

2
, 3 2, 4 3, 5 6, 6 ∞ ∞

7 7
6
, 1 7

5
, 3 7

4
, 4 7

3
, 5 7

2
, 6 MEM ∞

8 8
7
, 1 4

3
, 3 8

5
, 4 2, 5 MEM TIME MEM

(b) Miss-Competitiveness: FIFO vs MRU

FIFO
OPT 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
3 3

2
, 2 3, 3 ∞ ∞ ∞ ∞ ∞

4 4
3
, 2 2, 3 4, 4 ∞ ∞ ∞ ∞

5 5
4
, 2 5

3
, 3 5

2
, 4 MEM ∞ ∞ ∞

6 6
5
, 2 3

2
, 3 MEM MEM MEM ∞ ∞

7 7
6
, 2 MEM MEM MEM MEM MEM ∞

8 MEM MEM MEM MEM MEM MEM MEM
(c) Miss-Competitiveness: FIFO vs OPT

FIFO
PLRU 2 4 8

2 2, 1 ∞ ∞
3 3

2
, 1 ∞ ∞

4 4
3
, 1 4, 4 ∞

5 5
4
, 1 5

2
, 4 ∞

6 6
5
, 1 2, 4 ∞

7 7
6
, 1 7

4
, 4 ∞

8 8
7
, 1 8

5
, 4 8, 8

(d) Miss-Competitiveness:
FIFO vs PLRU

Figure A.3: Miss-Competitiveness results relating FIFO with LRU, MRU, OPT, and
PLRU. The first component of each cell denotes the competitive ratio of the
policy specified in the row relative to the policy specified in the column. The
second component shows the additive constant. As an example, FIFO(6) is
(2, 3)-miss-competitive relative to LRU(4).

138

MRU
LRU 2 3 4 5 6 7 8

2 1, 0 ∞ ∞ ∞ ∞ ∞ ∞
3 1, 0 2, 1 ∞ ∞ ∞ ∞ ∞
4 1, 0 3

2
, 1 3, 2 ∞ ∞ ∞ ∞

5 1, 0 4
3
, 1 2, 2 4, 3 ∞ ∞ ∞

6 1, 0 5
4
, 1 5

3
, 2 5

2
, 3 5, 4 ∞ ∞

7 1, 0 6
5
, 1 3

2
, 2 2, 3 3, 4 6, 5 ∞

8 1, 0 7
6
, 1 7

5
, 2 7

4
, 3 7

3
, 4 7

2
, 5 7, 6

(a) Miss-Competitiveness: MRU vs LRU

MRU
FIFO 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
3 1, 0 4, 3 ∞ ∞ ∞ ∞ ∞
4 1, 0 3, 2 6, 5 ∞ ∞ ∞ ∞
5 1, 0 3

2
, 1 4, 4 8, 7 ∞ ∞ ∞

6 1, 0 11
10
, 7

5
2, 6 5, 6 10, 9 ∞ ∞

7 1, 0 1, 1 5
3
, 2 3, 5 6, 8 MEM ∞

8 1, 0 1, 1 32
27
, 70

27
2, 5 MEM TIME MEM

(b) Miss-Competitiveness: MRU vs FIFO

MRU
OPT 2 3 4 5 6 7 8

2 2, 1 ∞ ∞ ∞ ∞ ∞ ∞
3 2, 1 4, 3 ∞ ∞ ∞ ∞ ∞
4 3

2
, 3

2
3, 3 6, 5 ∞ ∞ ∞ ∞

5 4
3
, 5

3
2, 3 MEM MEM ∞ ∞ ∞

6 5
4
, 7

4
MEM MEM MEM MEM ∞ ∞

7 MEM MEM MEM MEM MEM MEM ∞
8 MEM MEM MEM MEM MEM MEM MEM

(c) Miss-Competitiveness: MRU vs OPT

MRU
PLRU 2 4 8

2 1, 0 ∞ ∞
3 1, 0 ∞ ∞
4 1, 0 4, 3 ∞
5 1, 0 2, 3 ∞
6 1, 0 5

3
, 3 ∞

7 1, 0 3
2
, 3 ∞

8 1, 0 7
5
, 3 TIME

(d) Miss-Competitiveness: MRU vs PLRU

Figure A.4: Miss-Competitiveness results relating MRU with LRU, FIFO, OPT, and
PLRU. The first component of each cell denotes the competitive ratio of the
policy specified in the row relative to the policy specified in the column. The
second component shows the additive constant. As an example, MRU(6) is
(5

3
, 2)-miss-competitive relative to LRU(4).

139

APPENDIX A. RELATIVE COMPETITIVENESS RESULTS

Hit-Competitiveness

Online policies can be miss-competitive relative to OPT. In contrast, no online pol-
icy can be hit-competitive relative to OPT. Therefore, we have only computed hit-
competitiveness among LRU, PLRU, FIFO, and MRU.

PLRU
LRU 2 3 4 5 6 7 8

2 1, 0 0 0 0 0 0 0
4 1, 0 1, 0 1

2
, 1 0 0 0 0

8 1, 0 1, 0 1, 0 2
3
, 4

3
1
2
, 3

2
2
5
, 8

5
1
4
, 3

2
(a) Hit-Competitiveness: PLRU vs LRU

PLRU
FIFO 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0
4 1, 0 0 0 0 0 0 0
8 1, 0 3

4
, 1 1

2
, 3

2
0 0 0 0

(b) Hit-Competitiveness: PLRU vs FIFO

PLRU
MRU 2 3 4 5 6 7 8

2 1, 0 0 0 0 0 0 0
4 1, 0 1

2
, 1

2
0 0 0 0 0

8 1, 0 1, 0 2
3
, 4

3
1
3
, 1 0 MEM MEM

(c) Hit-Competitiveness: PLRU vs MRU

Figure A.5: Hit-Competitiveness results relating PLRU with LRU, FIFO, and MRU.
The first component of each cell denotes the competitive ratio of the policy
specified in the row relative to the policy specified in the column. The second
component shows the subtractive constant. As an example, PLRU(8) is
(2

3
, 4

3
)-hit-competitive relative to LRU(5).

140

LRU
FIFO 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0
3 1, 0 0 0 0 0 0 0
4 1, 0 0 0 0 0 0 0
5 1, 0 1, 0 0 0 0 0 0
6 1, 0 1, 0 0 0 0 0 0
7 1, 0 1, 0 1, 0 0 0 0 0
8 1, 0 1, 0 1, 0 0 0 0 0

(a) Hit-Competitiveness: LRU vs FIFO

LRU
MRU 2 3 4 5 6 7 8

2 1, 0 0 0 0 0 0 0
3 1, 0 0 0 0 0 0 0
4 1, 0 1, 0 0 0 0 0 0
5 1, 0 1, 0 0 0 0 0 0
6 1, 0 1, 0 1, 0 0 0 0 0
7 1, 0 1, 0 1, 0 0 0 0 0
8 1, 0 1, 0 1, 0 1, 0 0 0 0

(b) Hit-Competitiveness: LRU vs MRU

LRU
PLRU 2 4 8

2 1, 0 0 0
3 1, 0 0 0
4 1, 0 1

2
, 1 0

5 1, 0 2
3
, 1 0

6 1, 0 3
4
, 1 0

7 1, 0 4
5
, 1 0

8 1, 0 5
6
, 1 1

8
, 15

8
(c) Hit-Competitiveness: LRU vs PLRU

Figure A.6: Hit-Competitiveness results relating LRU with FIFO, MRU, and PLRU.
The first component of each cell denotes the competitive ratio of the policy
specified in the row relative to the policy specified in the column. The
second component shows the subtractive constant. As an example, LRU(8)
is (5

6
, 1)-hit-competitive relative to PLRU(4).

141

APPENDIX A. RELATIVE COMPETITIVENESS RESULTS

FIFO
LRU 2 3 4 5 6 7 8

2 1
2
, 1

2
0 0 0 0 0 0

3 2
3
, 2

3
1
2
, 1 0 0 0 0 0

4 3
4
, 3

4
1
2
, 1 1

2
, 3

2
0 0 0 0

5 4
5
, 4

5
2
3
, 4

3
1
2
, 3

2
1
2
, 2 0 0 0

6 5
6
, 5

6
2
3
, 4

3
1
2
, 3

2
1
2
, 2 1

2
, 5

2
0 0

7 6
7
, 6

7
3
4
, 3

2
2
3
, 2 1

2
, 2 1

2
, 5

2
1
2
, 3 0

8 7
8
, 7

8
3
4
, 3

2
2
3
, 2 1

2
, 2 1

2
, 5

2
1
2
, 3 1

2
, 7

2
(a) Hit-Competitiveness: FIFO vs LRU

FIFO
MRU 2 3 4 5 6 7 8

2 1
2
, 1

2
0 0 0 0 0 0

3 2
3
, 2

3
0 0 0 0 0 0

4 3
4
, 3

4
1
2
, 3

2
0 0 0 0 0

5 4
5
, 4

5
1
2
, 3

2
0 0 0 0 0

6 5
6
, 5

6
1
2
, 3

2
1
2
, 2 0 0 0 0

7 6
7
, 6

7
2
3
, 2 1

2
, 2 0 0 MEM 0

8 7
8
, 7

8
2
3
, 2 1

2
, 2 1

2
, 5

2
MEM TIME MEM

(b) Hit-Competitiveness: FIFO vs MRU

FIFO
PLRU 2 4 8

2 1
2
, 1

2
0 0

3 2
3
, 2

3
0 0

4 3
4
, 3

4
1
4
, 5

4
0

5 4
5
, 4

5
3
7
, 13

7
0

6 5
6
, 5

6
1
2
, 2 0

7 6
7
, 6

7
3
5
, 13

5
0

8 7
8
, 7

8
2
3
, 8

3
1
11
, 19

11
(c) Hit-Competitiveness: FIFO vs PLRU

Figure A.7: Hit-Competitiveness results relating FIFO with LRU, MRU, and PLRU.
The first component of each cell denotes the competitive ratio of the policy
specified in the row relative to the policy specified in the column. The
second component shows the subtractive constant. As an example, FIFO(7)
is (3

4
, 3

2
)-hit-competitive relative to LRU(4).

142

MRU
LRU 2 3 4 5 6 7 8

2 1, 0 0 0 0 0 0 0
3 1, 0 0 0 0 0 0 0
4 1, 0 1

2
, 1

2
0 0 0 0 0

5 1, 0 1
2
, 1

2
1
3
, 1 0 0 0 0

6 1, 0 2
3
, 2

3
1
2
, 1 1

4
, 5

4
0 0 0

7 1, 0 2
3
, 2

3
1
2
, 1 2

5
, 8

5
1
5
, 7

5
0 0

8 1, 0 3
4
, 3

4
2
3
, 4

3
1
2
, 3

2
1
3
, 2 1

6
, 3

2
0

(a) Hit-Competitiveness: MRU vs LRU

MRU
FIFO 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0
3 1, 0 0 0 0 0 0 0
4 1, 0 0 0 0 0 0 0
5 1, 0 1

2
, 1 0 0 0 0 0

6 1, 0 3
4
, 3

4
0 0 0 0 0

7 1, 0 1, 1 1
3
, 4

3
0 0 MEM 0

8 1, 0 1, 1 2
3
, 2 0 MEM MEM MEM

(b) Hit-Competitiveness: MRU vs FIFO

MRU
PLRU 2 4 8

2 1, 0 0 0
3 1, 0 0 0
4 1, 0 0 0
5 1, 0 1

4
, 1 0

6 1, 0 1
2
, 3

2
0

7 1, 0 1
2
, 3

2
0

8 1, 0 3
5
, 9

5
MEM

(c) Hit-Competitiveness: MRU vs PLRU

Figure A.8: Hit-Competitiveness results relating MRU with LRU, FIFO, and PLRU.
The first component of each cell denotes the competitive ratio of the policy
specified in the row relative to the policy specified in the column. The
second component shows the subtractive constant. As an example, MRU(8)
is (2

3
, 4

3
)-hit-competitive relative to LRU(4).

143

B
Non-Distributivity of

Ferdinand’s LRU Analysis

It has been an open question, whether Christian Ferdinand’s LRU analysis, described
in Chapter 4, is distributive. We present two small counter-examples that show that
both the may and the must analysis are not distributive.
For the non-distributivity of the may and the must analysis consider the following two
abstract states:

p̂ = [{a}, {c}, {b}]
q̂ = [{b}, {a}, {c}]

Accessing b in p̂ and q̂ , respectively, yields

updateLRU
must(p̂ , b) = updateLRU

may (p̂ , b) = [{b}, {a}, {c}]
updateLRU

must(q̂ , b) = updateLRU
may (q̂ , b) = [{b}, {a}, {c}]

whose join is

updateLRU
must(p̂ , b) tLRU

must update
LRU
must(q̂ , b) =

updateLRU
may (p̂ , b) tLRU

may update
LRU
may (q̂ , b) = [{b}, {a}, {c}] .

The may and must joins of p̂ and q̂ are

p̂ tLRU
must q̂ = [{}, {a}, {b, c}]

p̂ tLRU
may q̂ = [{a, b}, {c}, {}]

Accessing b in these states yields

updateLRU
must([{}, {a}, {b, c}] , b) = [{b}, {}, {a, c}]

updateLRU
may ([{a, b}, {c}, {}] , b) = [{b}, {a, c}, {}]

which proves the non-distributivity of Ferdinand’s LRU may and must analyses. This
is unfortunate, as the Abstract collecting path semantics induced by the abstract trans-
formers updateLRU

must and updateLRU
may and therefore the MOP solution are exact, i.e., the

abstract domain does not introduce additional uncertainty beyond that inherent to the
collecting semantics. Due to the non-distributivity this does not carry over to the MFP
solution.

145

C
Mathematical Foundations

This chapter introduces the mathematical notions and fundamental theorems underlying
abstract interpretation and data-flow analysis. It is loosely based on [Nielson et al.,
1999]. These foundations are mainly used in the introduction to abstract interpretation
in Chapter 3. Where possible, we try to intuitively describe the utility of the notions in
the course of introducing them.
Analysis domains are usually partially ordered sets:

Definition C.1 (Partial order, partially ordered set). A binary relation v⊆ L × L is
called a partial order, if and only if it is
• reflexive: ∀l ∈ L : l v l,

• antisymmetric: ∀l1, l2 ∈ L : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2,

• transitive: ∀l1, l2, l3 ∈ L : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3.
A set with a partial order (L,v) is called a partially ordered set.

When used as an analysis domain, the partial order v usually models precision: If a v b,
then a is more precise than b, i.e. b represents more concrete states than a.

Definition C.2 (Upper bounds, lower bounds). A subset Y of L has l ∈ L as an upper
bound if ∀l′ ∈ Y : l′ v l. Y has l ∈ L as a lower bound if ∀l′ ∈ Y : l v l′.
A least upper bound l of Y is an upper bound of Y that is smaller than all other upper
bounds of Y . Similarly, a greatest lower bound l of Y is a lower bound of Y that is
greater than all other lower bounds of Y .
If a least upper bound of a subset Y of L exists, it is unique (due to the antisymmetry
of v) and denoted by

⊔
Y . Similarly, if Y has a greatest lower bound, it is unique and

denoted by
d
Y . We also call

⊔
join and

d
meet.

Least upper bounds and greatest lower bounds of pairs l, l′ ∈ L are denoted ltl′ = ⊔{l, l′}
and l u l′ = d{l, l′}, respectively.

Analyses need to safely combine information. a t b is the most precise element in the
partially ordered set that represents all concrete states that a and b represent. However,
in partially ordered sets, a t b need not exist. There may be several upper bounds on
a and b, none of which is the smallest. To always be able to safely and – within the

147

APPENDIX C. MATHEMATICAL FOUNDATIONS

limits of the domain – precisely combine analysis information, analysis domains should
be complete lattices :

Definition C.3 (Complete lattice). A complete lattice L = (L,v,⊔,d,⊥,>) is a
partially ordered set (L,v) such that all subsets have least upper as well as greatest
lower bounds. Furthermore, ⊥ =

⊔
∅ =

d
L is the least element. > =

d
∅ =

⊔
L is

the greatest element.

Sometimes, partial orders are only closed under least upper bounds or greatest lower
bounds:

Definition C.4 (Semilattice). A join-semilattice L = (L,v,⊔,>) is a partially ordered
set (L,v) such that all subsets have least upper bounds and > =

⊔
L is the greatest

element. A meet-semilattice L = (L,v,d,⊥) is a partially ordered set (L,v) such that
all subsets have greatest lower bounds and ⊥ =

d
L is the least element.

Example (Powerset lattice). An example of a complete lattice is the powerset lattice
L = (2S,⊆,⋃,⋂,∅, S). The subset relation ⊆ is a partial order. In the ⊆ relation, ∅
is the least element, and S is the greatest element. Furthermore, the least upper bound
of a set of subsets is simply the union

⋃
of these sets. Intersection

⋂
determines the

greatest lower bound of a set of subsets of S.

We associate analysis results in some complete lattice L with program points in a set S.
This induces another complete lattice:

Definition C.5 (Total function space). Let S be a set and L = (L,vL,
⊔
L,

d
L,⊥L,>L)

be a complete lattice. Define M as the total function space from S to L:

M = S → L.

Then, M = (M,vM ,
⊔
M ,

d
M ,⊥M ,>M) is a complete lattice, with

f vM f ′ ⇔ ∀s ∈ S : f(s) vL f ′(s),⊔
M Y = λs.

⊔
L{f(s) | f ∈ Y },

and ⊥M := λs.⊥L and similarly for
d
M and >M .

Functions are used to represent the concrete and abstract semantics and to relate con-
crete and abstract domains. The following properties of functions are often necessary or
desirable:

Definition C.6 (Properties of functions). A function f : L1 → L2, where (L1,v1) and
(L2,v2) are partially ordered sets, is
• monotone (or isotone) if ∀l, l′ ∈ L1 : l v1 l

′ ⇒ f(l) v2 f(l′),

• distributive (or additive) if ∀l, l′ ∈ L1 : f(l t1 l
′) = f(l) t2 f(l′),

148

The semantics or approximations of the semantics of programs can be formulated as
fixed points:

Definition C.7 (Fixed points). Given a a complete lattice L = (L,v,⊔,d,⊥,>) and
a monotone function f : L→ L on L, l ∈ L is a fixed point of f if and only if f(l) = l.
We write

Fix(f) := {l | f(l) = l},
for the set of fixed points. The function f is reductive at l if and only if f(l) v l and
we write

Red(f) := {l | f(l) v l},
for the subset of L on which f is reductive. The function f is extensive at l if and only
if l v f(l). We write

Ext(f) := {l | l v f(l)}.
for the set of elements on which f is extensive.
Since L is a complete lattice, every subset of L has a greatest lower bound and a least
upper bound in L, in particular Fix(f). We denote the greatest lower bound of Fix(f)
by lfp(f)

lfp(f) =
l

Fix(f)

and the least upper bound of Fix(f) by gfp(f)

gfp(f) =
⊔

Fix(f).

Tarski [Tarski, 1955] showed that lfp(f) and gfp(f) are the least fixed point of f and
the greatest fixed point of f , respectively:

Theorem C.8 (Tarski’s fixed point theorem, [Nielson et al., 1999]). Let L = (L,v
,
⊔
,
d
,⊥,>) be a complete lattice and f : L→ L be a monotone function. Then lfp(f)

and gfp(f) are themselves fixed points:

lfp(f) =
l

Red(f) ∈ Fix(f)

gfp(f) =
⊔

Ext(f) ∈ Fix(f).

Proof. See [Nielson et al., 1999]

Tarski’s fixed point theorem guarantees the existence of least and greatest fixed points.
To determine abstract semantics, one needs to compute least fixed points. The least
fixed point of a function f : L → L can be computed if the complete lattice L satisfies
the ascending chain condition:

149

APPENDIX C. MATHEMATICAL FOUNDATIONS

Definition C.9 (Chains). A subset Y ⊆ L of a partially ordered set (L,v) is a chain
if ∀l1, l2 ∈ Y : (l1 v l2) ∨ (l2 v l1). In other words, a chain is a totally ordered subset of
L.
A sequence (ln) of elements in L is an ascending chain if n ≤ m⇒ ln v lm. Similarly,
a sequence (ln) of elements in L is a descending chain if n ≤ m⇒ lm v ln.
A sequence eventually stabilizes if and only if ∃n0 ∈ N : ∀n ∈ N : n ≥ n0 ⇒ ln = ln0.
A partially ordered set (L,v) satisfies the ascending chain condition if all ascending
chains eventually stabilize. Similarly, a partially ordered set (L,v) satisfies the de-
scending chain condition if all descending chains eventually stabilize.

The ascending chain condition transfers to total function spaces:

Lemma C.10 (Total function space, ascending chain condition). Let S be a finite set
and L = (L,vL,

⊔
L,

d
L,⊥L,>L) be a complete lattice. If L satisfies the ascending chain

condition, then so does the total function space from S To L, M = S → L.

Proof. Let n be the length of the longest ascending chain in L and |S| be the size of
S. Then, n · |S| is a bound on the length of ascending chains in M . In every “step”
of any ascending chain, one of the functions’ values must have increased. After n · |S|
“steps” each of the functions’ values must have increased at least n times and no further
increases are possible.

Kleene’s fixed point theorem provides a way to iteratively compute least and greatest
fixed points:

Theorem C.11 (Kleene’s fixed point theorem). If a lattice L = (L,v,⊔,d,⊥,>) sat-
isfies the ascending chain condition, one can compute the least fixed point of a monotone
function f : L→ L by repeated application of f to ⊥:

∃i ∈ N : lfp(f) = f i(⊥)

The greatest fixed point can similarly be computed by repeated application of f to >, if
the lattice satisfies the descending chain condition:

∃i ∈ N : gfp(f) = f i(>)

Proof. Trivially, ⊥ v f(⊥). Due to the monotonicity of f , also f 1(⊥) v f 2(⊥) and by
induction f i(⊥) v f i+1(⊥). As v is transitive by definition, the sequence (fn(⊥))n is
an ascending chain. As L satisfies the ascending chain condition, this sequence must
eventually stabilize, i.e. there is an n0 such that f(fn0(⊥)) = fn0(⊥) is a fixed point.
fn0(⊥) is also the least fixed point: trivially ⊥ v lfp(f) and by monotonicity of f and
induction, f i(⊥) v f i(lfp(f)) = lfp(f) for all i, in particular for i = n0.
Similar arguments prove gfp(f) = f i(>) for some i.

150

