
Visualizing Structure, Behavior and Evolution of Software

Lecture Notes: Software Visualization,
Winter Term 2002/2003, Saarland University

Stephan Diehl

January 30, 2003

2

Contents

1 Introduction 5
1.1 What is it all about? . 6
1.2 Taxonomies and Surveys . 7
1.3 Visualization Pipeline . 9
1.4 Examples of Software Visualization Tools 10

1.4.1 aiCall: Static Program Visualization 10
1.4.2 X-Tango: Algorithm Animation 11
1.4.3 SeeSoft: Software Evolution . 11

2 Static Program Visualization 13
2.1 Pretty Printing . 13
2.2 Program as Publication . 13
2.3 Jackson Diagrams . 15
2.4 Control-Flow Graph . 17

2.4.1 Automatic Generation of CFGs 18
2.4.2 Syntax of a simple programming language 18
2.4.3 Computation of a CFG . 19
2.4.4 Simple Layout of CFGs . 20

2.5 Nassi-Shneiderman Diagrams . 21

3 Visualizing the Results of Program Analyses 23
3.1 Static Analysis . 23
3.2 Control-Flow Analysis . 23
3.3 Data-Flow Analysis . 24

3.3.1 Available Expressions . 24
3.3.2 Live Variables . 25

3.4 Examples of Visualization of Analysis Results 27

4 Algorithm Animation 29
4.1 What is it about? . 29
4.2 Why do people animate algorithms? 30
4.3 A Short History of Algorithm Animation 31
4.4 Some animations produced by X-Tango 32
4.5 3D for Algorithm Animation . 34
4.6 Some Design Issues . 35
4.7 Architectures of Algorithm Animation Tools 36

4.7.1 Example: Interesting Events in POLKA 36
4.7.2 Example: Declarations in LEONARDO 37

4.8 Abstract Algorithm Animation . 38

4 Contents

Chapter 1Chapter 1
Introduction

The important role that visualization plays for human reasoning in general and
scienti�c progress in particular has been emphasized by philosophers through-
out the centuries.

�... thought is impossible without an image.�
[Aristotle,350 BC]

�Imagination or visualization, and in particular the use of diagrams,
has a crucial part to play in scienti�c investigation.�

[Rene Descartes, 1637]

�The understanding can intuit nothing, the senses can think noth-
ing. Only through their union can knowledge arise.�

[Emanuel Kant,1781]

�Logicians may reason about abstractions. But the great mass of
men must have images.�

[Thomas Babington Macaulay,1825]

Today computers have become an important tool to create visualizations and
help the user to better understand complex phenomena. As a consequence
visualization has become a discipline of computer science.

[Visualization is] �the use of computers or techniques for compre-
hending data or to extract knowledge from the results of simula-
tions, computations, or measurements.�

[McCormick, DeFanti, Brown,1987]

The above de�nition does not restrict visualization to rendering information
visible, but it is more general and sets visualization equal to perceptualization,
which includes soni�caton, tactilization and haptilization.
Visualization plays a major role in the use of computers to support human
reasoning, a �eld that was coined �intelligence ampli�cation� or short IA, in
contrast to �arti�cial intelligence� or short AI, where the goal is that the com-
puter itself becomes intelligent.

�Intelligence Ampli�cation�
[Frederick Brooks, 1969]

Visualization is heavily used in mechanical engineering, chemistry, physics
or medicine. Computer scientists have developed sophisticated systems to
produce visualizations for these disciplines. Astonishingly enough, computer
scientists have only made little use of visualization as a tool for designing,
implementing and maintaining software. Even worse, many consider them-
selves as theoreticians and disregard visualization � an etymologically wrong

6 Introduction

dichotomy1. Programmers tend to adapt to the level of representation pro-
vided by the computer, instead of adapting the computers representations to
their perceptive abilities.

Figure 1.1: No visualization required.

Despite all formal and cryptical notations, the terminology of computer sci-
ence is rich of metaphors. The goal of such metaphors is to evoke mental
images to better memorize concepts and to exploit analogies to better under-
stand structures or functions. Computer scientists use the terms 'automata'
and 'machines' for mathematical models of computation. The terms 'tapes',
'trees', 'leaves', 'queues', '�les', 'folders' and 'archives' are used to denote data
structures. For example, a Turing machine is a mathematical model comprised
of sets, functions, and/or relations. The machine analogy lets us transport
aspects from the physical world to the mathematical and thus helps to better
understand the mathematical model. We might even think of gear wheels and
how one drives the others, once we start to turn one of them. The goal of
software visualization is not to produce neat computer images, but computer
images which evoke mental images for comprehending software better. Find-
ing new metaphors thus will not just produce better visualizations, but it will
also improve the way we talk about systems.

1.1 What is it all about?
So far, we talked about visualization, its importance for human reasoning and
in particular for science. In the following chapters we will look at the use of
visualization in the context of software development. Many authors de�ne
software visualization as the

Visualization of algorithms and programs. (Narrow De�nition)

This de�nition excludes a lot of uses of visualization techniques in computer
science and has also hindered synergies in the past. In this text we de�ne
software visualization as the

1The word 'theory' comes form the Greek word 'theorein' which means 'to view'. The early
Pythagoreans supported their theorems not by proofs but by contemplation.

1.2 Taxonomies and Surveys 7

Visualization of artifacts related to software and its development
process. (Wide De�nition)

In fact, researchers in software visualization develop and investigate methods
and use of computer graphical representations of di�erent aspects of software,
e.g. its static structure, its concrete and abstract execution, and its evolution.
Short, they are concerned with

Visualizing Structure, Behavior and Evolution of Software

Today there are two major disciplines of visualization: Scienti�c visualization
processes physical data, whereas information visualization processes abstract
data2. As algorithms are a kind of information, we consider software visual-
ization part of information visualization.
Coming from a mathematical background, it is quite illuminating to realize
that algorithms or programs are an essential part of nature. For examples,
biological programs are encoded in genes and executed by proteins, enzymes,
etc. Some behaviors can be seen as programs which animals (and humans)
learn through conditioning (Pavlov's dogs).
In 1950 Wiener stated that information is neither matter nor energy. Informa-
tion is thus an entity of its own, while matter and energy are just media to
carry information. One consequence of Einstein's relativity theory (Einstein,
1905) with its equational slogan E �mc2 is that matter can be converted into
energy and vice versa. So far, we don't know and we don't expect that there
exists a similar relation between information and matter, or information and
energy. Nevertheless it has become a popular theme of science �ction.

1.2 Taxonomies and Surveys
Several researchers proposed taxonomies to classify software visualization re-
search and tools.
Myers introduced a taxonomy for program visualization [Mye90] which iden-
ti�es 6 regions in a 2 � 3 matrix. He distinguishes data, code and algorithm
visualization where algorithm visualizations represent algorithms at a higher
level of abstraction than program code.

Dynamic

Static

Code Data Algorithm

1 2 3

4 5 6

Figure 1.2: Taxonomy by Myers

Three years later Price et. al. suggested a more hierarchical taxonomy of soft-
ware visualization [PBS93]. They distinguish program visualization, which con-
sists of code and data visualization, and the more abstract algorithm anima-
tion. In addition they introduce a number of aspects which should be used to
classify software visualization tools:

2There have been several attempts in the literature [Chi00] to make the distinction more clear,
but there always remains an overlap of both disciplines.

8 Introduction

Scope = range of programs used as inputs for the visualization

Content = what information about the software is visualized

Form = characteristics of output of system (e.g. medium)

Method = how is the visualization speci�ed

Interaction = how does the user control the system

E�ectiveness = how well does the system communicate information to the
user

At about the same time Roman and Cox used a very similar set of aspects to
classify some existing software visualization tools [RR93]: scope (code, data
state,control state, behavior) abstraction, speci�cation method, interface and
presentation.

In 1996 Oudshoorn et. al. proposed a quite di�erent and more technical pro-
gram visualization taxonomy which was based on what kind of software on
what kind of hardware is actually visualized [OWE96].

Program Visualization

Hardware Architecture Software

Uniprocessor Multiprocessor

ParallelDistributed

Operating

System
Language Application

Figure 1.3: Taxonomy by Oudshoorn et. al.

In an attempt to identify open research questions in software visualization
the current author did a literature survey and classi�ed research papers in
a 4 � 4 matrix [Die02a]. The two dimensions of the matrix are the classical
abstraction layers of software systems (hardware, virtual/abstract machine,
program and system) and the static and dynamic phenomena of these layers.
The map is incomplete in the sense that one could add additional layers (e.g.
operating system) or structures (e.g. project structure). In the matrix shades of
gray indicate how much published research exists in certain areas of software
visualization. The survey gives a rough orientation on the activity of research
in these areas.

1.3 Visualization Pipeline 9

Evolution of
Static Structure

Abstract
Execution

Concrete

Execution

Static
Structure

Real

Machines

Abstract

Machines

Algorithms/

Programs

Systems

Evolution of
Static Structure

Abstract
Execution

Concrete

Execution

Static
Structure

Real

Machines

Abstract

Machines

Algorithms/

Programs

Systems

more than 100 more than 10 up to 10

Figure 1.4: Literature Survey

In a recent survey [Kos02] based on questionnaires �lled in by 111 researchers
from software maintainance, re-engineering and reverse engineering, Rainer
Koschke reports that 40 % �nd software visualization absolutely necessary for
their work and that another 42 % �nd it important but not critical.
In another survey [BK01] with 107 participants mostly from industry Bassil
and Keller found the following reasons why practitioners apply software vi-
sualization. In the order of decreasing importance the bene�ts of software
visualization tools were:

� Savings in time and money,

� Better comprehension of software,

� Increase in productivity and quality,

� Management of complexity,

� To �nd errors

They also found that two issues ranked highest on the participants wish list:

� Integration of software visualization tools into other (third-party) tools

� Better import/export of data and visualizations

In the following chapters we will learn what kinds of information about soft-
ware exist, how they are computed, what visual representations are appropri-
ate for them and how these are computed. Our selection of topics, systems
and approaches is by no way complete, but we tried to select seminal work as
well as newer approaches which we found most promising.

1.3 Visualization Pipeline
The creation of computer images is just the last step in the visualization
pipeline: data gathering, data analysis, and visualization. In interactive visual-
izations the user can control the previous steps of the pipeline based on the
graphical output produced before. This way of interaction is sometimes called
visual or computational steering[JPH�99]. It provides the technical basis for

10 Introduction

graphical user interfaces designed according to Ben Shneiderman's basic prin-
ciple, the visual information seeking mantra: overview �rst, then zoom and
�lter, then details on demand [Shn96].

• Data Acquisition

• Analyses

• Visualization

b

b

Navigation

(Visual

Steering)

Navigation

(Visual

Steering)

Figure 1.5: Visualization pipeline

1.4 Examples of Software Visualization Tools
To conclude this introduction we will brie�y look at three examples of software
visualization tools drawn from di�erent areas.

1.4.1 aiCall: Static Program Visualization
AbsInt GmbH's analysis tool called aiCall produces visualizations of control
�ow graphs of embedded applications [EB02]. In these graphs the results of a
static program analysis are shown. For each instruction and each function the
analysis computes the stack usage. This information can for example be used
to prevent runtime errors due to stack over�ow.

Figure 1.6: Stack Usage

1.4 Examples of Software Visualization Tools 11

1.4.2 X-Tango: Algorithm Animation

In Figure 1.7 a snapshot of an animation of the Quicksort algorithm is shown.
The animation was produced with the X-Tango algorithm animation tool[Sta90b].
The elements to be sorted are shown as vertical bars, nested recursive calls are
indicated by the boxes around some of the bars, and the current pivot element,
i.e. the element where the list is split, is colored green.

Figure 1.7: X-Tango animation of Quicksort

1.4.3 SeeSoft: Software Evolution

SeeSoft was developed at AT&T Bell Laboratories to visualize changes and met-
rics related to evolving large (several million lines of code) and complex soft-
ware systems. Files are represented by rectangles. Within each rectangle col-
ored pixels or lines represent lines of the source code. In the example the color
indicates the age of the last modi�cation. Blue (cold) is used for lines which
have not been changed for a long time, whereas red (hot) is used for recently
changed lines.

12 Introduction

Figure 1.8: Visualizing the age of program code changes

Chapter 2Chapter 2
Static Program
Visualization
In this chapter we look at di�erent ways to visualize the structure of a program
given the program text as a sequence of characters. We look at both text-based
and diagrammatic methods.

2.1 Pretty Printing
Originally pretty printing was restricted to the use of indentation, spaces and
line breaks to make the structure of a program more explicit. By tabbing decla-
rations can be vertically aligned. Di�erent width of spaces declarations makes
operator precedence more explicit. With advance of technology also fonts,
font face and colors are used, e.g. bold face is used for keywords and italics
for comments. Di�erent font sizes indicated nesting (lexical scope). As can be
seen in the example in Figure 2.1, if done wrong pretty printing can suggest
wrong nesting. In the pretty printed text on the right, the statement i++ seems
to be part of the body of the loop.

int i,c; while(i<100) if (i%2==0) c++; i++;# #
int i,c;

while (i<100)
if (i % 2==0) c++;

i++;

int i,c;

while (i<100)
if (i % 2==0) c++;
i++; WRONG !!!

Figure 2.1: Pretty printing

2.2 Program as Publication
In 1984 Donald Knuth, the inventor of the document typesetting system TEX,
introduced the term literate programming [Knu84, Knu92] evangelizing that
programs should be considered as works of literature. To facilitate the pro-
duction of well-documented and neatly typeset programs, Knuth developed
the WEB tool.

�I'm pleased that my work on typography, which began as an ap-
plication of computers to another �eld, has come full circle and
become an application of typography to the heart of computer sci-
ence.�

[Knuth, 1984]

With less focus on tool support Baecker and Marcus investigated the use of
typography to increase the readability of programs[BM98, BM90]. They sug-
gest to produce program books with the same care as other textbooks. Their

14 Static Program Visualization

program book consists of the frontmatter, including a cover page, a title page,
an abstract, a program history, information about the authors, and a table of
contents. The �rst chapter contains the user documentation, e.g. as a tutorial
on how to use the program. The second chapter gives an overview of the pro-
gram structure through a program map and the call hierarchy. The program
map is a table with thumbnails of each program code page with major function
names emphasized. Each subsequent chapter contains the pretty printed pro-
gram code of a source �le (here �les with extension .c and .h) with comments
in the margins (see Figure 2.2). The last chapter of the book provides the pro-
grammer documentation including the installation and maintenance guides.
At the end of the book several indices like cross-references, caller index, and
callee index are given. Finally, at the back cover page the highlights of the book
content are summarized.

2.3 Jackson Diagrams 15

Figure 2.2: A page from the program book

2.3 Jackson Diagrams
We start our discussion of several diagrammatic techniques with Jackson di-
agrams. They decompose a program hierarchically [Jac75]. According to the
Jackson-Structured-Programming methodology data structures involved are �rst
hierarchically decomposed using these diagrams, then the program structure
should follow this decomposition.
The basic elements of Jackson diagrams are actions. Actions are decomposed
into subactions as shown in Figure 2.3. A sequence A consists of the execution

16 Static Program Visualization

of the subaction C after the subaction B. An iteration A consists of multiple
repetitions of B as long as the iteration condition C holds. Finally, an alternative
A is either the subaction B if condition C1 holds, or the subaction C if the
condition C2 is true.

A

B C

A

B C

A

B *
C C1 C2

Figure 2.3: Sequences, iterations and alternatives in Jackson diagrams

In the example in Figure 2.4 condition C1 is true if the stack of bills is not
empty, C2 is true if the number of the credit card is not valid and C3 is true
otherwise.

Withdraw amount

from cardholder‘s

account

Add amount

to payee‘s

account

Process

non-valid

bill

Process

valid

bill

Process credit card bills

Process bill * C1

C2 C3

Figure 2.4: Example: Jackson diagram for designing a system

In Figure 2.5 the Jackson diagram for the factorial program below is shown.

int fact(n) { if (n>1)
{ nfact=2;
for(int i=3;i<=n;i++)
nfact=nfact*i;

}
else
{ nfact=1;
}
return nfact;

}

nfact=2 i=3

nfact=1

fact(n)

C1

C1 C2

*

nfact=nfact*i i=i+1

C1: n<=1

C2: n>1

C3: i<=n

Figure 2.5: Example: Jackson diagram of a factorial program

2.4 Control-Flow Graph 17

2.4 Control-Flow Graph

In 1947 Goldstine and von Neumann [GvN47] introduced control-�ow graphs
(short CFG) to depict the structure of programs. In these graphs rectangular
nodes represent evens, activities, processes, functions or statements, whereas
nodes in form of a diamond contain branch conditions and can have serveral
several exits (outgoing edges). Edges in the graph are drawn as arrows and
depict the transition from one statement to another, i.e. the �ow of control
(see Figure 2.6). Later, many more graphical elements have been added and
have been standardized as DIN 66001 (�owcharts).

Statement Test?
T F

Figure 2.6: Statements and alternatives in control-�ow graphs

In Figure 2.7 a control-�ow graph of the previously shown factorial program is
shown. To get this graph, the for loop has been converted into a while loop.

int fact(n) { if (n>1)
{ nfact=2;
int i=3;
while(i<=n)
{ nfact=nfact*i;

i=i+1;
}

}
else
{ nfact=1;
}
return nfact;

}

nfact=2

n>1
T F

i=3

i<=n

T

F

nfact=nfact*i

i=i+1

nfact=1

Figure 2.7: Example: Control-�ow graph of a factorial program

For many applications of control-�ow graphs it is convenient to combine se-
quences of statements into a single node called basic block as shown in Fig-
ure 2.8.

n=100

x=0

z=0

n=100

x=0

z=0

Figure 2.8: Basic block

18 Static Program Visualization

2.4.1 Automatic Generation of CFGs
The �rst CFGs were drawn by hand to develop, explain or debug programs. But
soon researchers developed programs to automatically compute and layout
the control-�ow graph of a given program. One of those early systems was
developed by A.E. Scott on an IBM 705. The layouted graph was drawn by a
text printer with a very limited character set, see Figure 2.9.

Figure 2.9: Generated control-�ow graph printed as text

We will give the synatx of a simple programming language, de�ne how to com-
pute the CFGs of programs in that language and �nally give a simple layout
algorithm for drawing such graphs.

2.4.2 Syntax of a simple programming language
Programs in the language, that we consider in the rest of this chapter, consists
of assignments, alternatives and loops. Expressions can occur on the right-

2.4 Control-Flow Graph 19

hand side of an assignment, or in as conditions of alternatives and loops.

Gsimple � f S -! V=E P

j S;S
j if (E) {S} else {S} P

j while (E) {S} P

V -! variable name
E -! expression
P -! label of program point

g
Figure 2.10: Syntax of a simple programming language

To make the following presentations easier, we also assume that every state-
ment, i.e. program point, has been given a unique label.
In the following we will use the notation LG�A� to denote the language de�ned
by a grammar G for a non-terminal A, or more formally:

LG�A� � fwjw is a terminal word with A G!� wg
In particular, LGsimple�S� is the set of all programs which can be written in our
simple programming language.

2.4.3 Computation of a CFG
Let s; si 2 LGsimple�S�; v 2 LGsimple�V�; p 2 LGsimple�P� and e 2 LGsimple�E�. Fig-
ure 2.11 shows how the CFG of a statement is built from the CFGs of the
statements that it contains. For an assignment v=ep the CFG simply consists
of a node representing the assignment. For a sequence s1;s2 of statements
there is an arrow from the end of the CFG built for the �rst statement to the
entry of the CFG built for the second statement. For a loop while(e) {s}p
a node with the condition e is connected (true branch) with the CFG built for
the body of the loop. From the end of that CFG an arrow is drawn back to the
loop condition. Finally for the alternative if(e) {s1} else {s2}p a node rep-
resenting the condition is connected with the CFG built for the �rst statement
(true branch) and with the CFG built for the second statement (false branch).

v=ev=e

s
1

s
2

s
1

s
1

s
2

s
2

e

T

F

s

e

T

F

ss

e
F

s
2

s
1

T
e

F

s
2

s
2

s
1

s
1

T

Figure 2.11: CFGs for assignment, sequence, while loop, and alternative in-
structions

To precisely de�ne the computation of a control-�ow graph we �rst give a
formal de�nition of a control-�ow graph. A control-�ow graph is a tuple
�V ; E; in; out� where

� V is a set of nodes,

20 Static Program Visualization

� E � V � L� V a set of edges,

� L � f�;T;Fg a set of labels,

� and in; out 2 V are start and end nodes.

Note, that according to this de�nition a CFG has exactly on entry and one exit
node. Let Ð be the set of all control �ow graphs. Below we de�ne a function
cfg : LGsimple�S� -! Ð which maps programs to control �ow graphs. cfg�w� �
�V ; E; in; out� where

if w � v=ep then

8><>: V � fw; in; outg;E � f�in; �;w�; �w; �; out�g;
and in; out are two new nodes.

ifw � s1;s2 then

8>>><>>>:
V � �V1 � fout1g�[�V2 � fin2g�;
E � �E1 � f�v; l; out1�jv 2 V1g�[�E2 � f�in2; �; v�jv 2 V2g�[f�v1; l1; v2�j�v1; l1; out1� 2 E1; �in2; �; v2� 2 E2�g
and in � in1; out � out2.

where �V1; E1; in1; out1� � cfg�s1� and �V2; E2; in2; out2� � cfg�s2�

An invariant in our construction is that an entry node has only one outgoing
edge, whereas an exit node can have many incoming edges. To connect two
CFGS in a sequence all these incoming edges of the exit node of the �rst CFG
are connected to the target node of the outgoing edge of the entry node of the
second CFG.

if w � while(e){s}p then

8>>>>>>>>>><>>>>>>>>>>:

V � V0 [fepg;
E � �E0 � � f�in0; �; v�jv 2 V0g[f�v; l; out0�jv 2 V0g��[f�in0; �; ep�; �ep; F; out0�g[f�ep; T ; v�j�in0; �; v� 2 E0g[f�v; l; ep�j�v; l; out0� 2 E0g
and in � in0; out � out0.

where �V0; E0; in0; out0� � cfg�s�

ifw � if(e){s1}else{s2}p then

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

V � �V1 � fin1; out1g�[�V2 � fin2; out2g�[fepg;
E � �E1 � f�in1; �; v1�; �v2; l; out1�jv1; v2 2 V1g[�E2 � f�in2; �; v1�; �v2; l; out2�jv1; v2 2 V2g[f�in; �; ep�g

[f�ep; T ; v�j�in1; �; v� 2 E1g[f�v; l; out�j�v; l; out1� 2 E1g[f�ep; F; v�j�in2; �; v� 2 E2g[f�v; l; out�j�v; l; out2� 2 E2g
and in; out are two new nodes.

where �Vi; Ei; ini; outi� � cfg�si�

2.4.4 Simple Layout of CFGs
We use rectangular boxes and place in and out nodes in the middle of the upper
and lower borders. For expressions the height h depends on the font size and
the width also on the length of the expression. For a while loop the heights
h1, h2 and h3 are �xed. So we can compute H � h1 � h2 � h3 beforehand. As
a result we have h � H � he � hs .

2.5 Nassi-Shneiderman Diagrams 21

e

w

he

w

h

e

T

F

s

h1

he

h2

hs

h3

e

T

F

s

h1

he

h2

hs

h3

Figure 2.12: Box heights of the CFG for expressions and loops

We de�ne a function box : LGsimple�S� -! R�R which maps programs to the
sizes of the box to layout its control �ow graph:

box�e� � �w;h� where w;h depend on the font.

box�s1;s2� � �W �max�w1;w2�;H � h1 � h2� where �wi; hi� � box�si�

box�while(e){s}� � �W �max�we;ws�;H�he�hs� where �we; he� � box�e�
and �ws ; hs� � box�s�
Knowing the sizes of each box we can now easily draw the arrows as we only
have to connect them to the middle of the upper or lower border of a box.

2.5 Nassi-Shneiderman Diagrams

To enforce more structured programs Nassi and Shneiderman introduced nested
rectangular diagrams, also known as structograms [IS73].

�Not only does this notation help the programmer to think in an
orderly manner, it forces him or her to do so. ... The absence of
any representation of the GOTO or branch statement requires the
programmer to work without it: a task which becomes increasingly
easy with practice.�

[I. Nassi and B. Shneiderman, 1973]

The primitive diagrams are shown in Figure 2.13.

Process:Process: Sequence:Sequence: Conditional:

Test?
True False

THEN Clause ELSE Clause

Conditional:

Test?
True False

Test?
True False

THEN Clause ELSE Clause

Loop:

WHILE Clause

Body

Loop:

WHILE Clause

Body

Figure 2.13: Basic Nassi-Shneiderman diagrams

As an example consider the Nassi-Shneiderman diagram of the factorial pro-
gram in Figure 2.14.

22 Static Program Visualization

int fact(n) { if (n>1)
{ nfact=2;
for(int i=3;i<=n;i++)
nfact=nfact*i;

}
else
{ nfact=1;
}
return nfact;

}

fact(n)

n>1

True False

n>1

True False

nfact=2

nfact=1for i=3 to n

nfact=nfact*i

return nfact

Figure 2.14: Nassi-Shneiderman diagram of a factorial program

The kinds of control �ow that can be modelled with these diagrams are re-
stricted by the fact that rectangles are always disjoint from or always fully
enclosed by other rectangles. There is no overlap. A similar restriction is true
for the control-�ow graphs that we constructed above for our simple program-
ming language, but if we would add jumps to our language this would no longer
be the case: Gspaghetti � Gsimple[f S -! goto P P g. Actually, with these jumps
we can even specify programs which have a non-planar control-�ow graph, i.e.
that can not be drawn without edge crossings. Figure 2.15 shows the small-
est such control-�ow graph. In essence it is the complete graph with 5 nodes,
i.e. all nodes are connected to each other (see Kuratowski Reduction Theorem
[Tho81]). In graph theory this graph is often denoted byK5.

if (a1>0)
{ if (a2>0)

{ if (a3>0)
{ if (a5>0)

{ goto L1 }
else
{ goto L2 } L5

}
else
{ if (a4>0)

{ goto L5 }
else
{ goto L1 } L4

} L3

}
else
{ goto L4 }

} L2

else
{ goto L3 } L1

a1>0

T

F

a2>0

T

F
a3>0

F

a4>0
F

a5>0
F

T

T

T

L2

L1

L3

L4 L5

Figure 2.15: Smallest non-planar control-�ow graph

Chapter 3Chapter 3
Visualizing the Results of
Program Analyses
In this chapter we will look at static program analyses. First we will discuss why
control-�ow analysis, i.e. the computation of the CFG for a given program, is
not always as simple as for the language that we used in the previous chapter.
Then we will give an introduction to data-�ow analyses and look at two such
analyses in more detail. Finally we will give some examples of systems that
visualize such and similar analysis results.

3.1 Static Analysis

Static analyses compute properties of a program which hold for all executions
of this program. It is important to note, that not every property can be com-
puted because of the Halting Problem
We call those properties that cannot be computed before runtime dynamic.

3.2 Control-Flow Analysis

Control-�ow analysis computes the control-�ow graph of a program. For the
sample language in the previous chapter the algorithm presented was very
easy. If we consider real programming languages the problem becomes much
harder. Such programming languages typically have procedural abstraction.
Each procedure has its own control-�ow graph, but due procedure calls within
the body of a procedure these graphs are interconnected. Thus we distinguish
intra- and inter-procedural control-�ow graphs. So, if we have a call of proce-
dure q in the body of procedure p we draw an arrow from the program point of
the call to the entry node of procedure q and an arrow from the exit node of q
back to the call. Many modern programming languages have function pointers.
They are a key feature of higher-order functional languages, but they also exist
in C. The problem is that the value of such a function pointer is computed at
runtime and thus it can point to all functions of the program or at least all
functions of a certain type. As a consequence we have to draw edges from
a program point that calls a function via a function pointer to all these func-
tions. A similar problem occurs in object oriented languages like Java. There
we do not have function pointers directly, but references to objects which con-
tain functions or in OO lingo methods. What method is called depends on the
runtime type of the object referred to. Because of this dynamic dispatch of
methods the inter-procedural CFG typically contains edges to all those meth-
ods which might be called based on the static type of the reference. By com-
puting better approximations of the runtime type of the reference the number
of possible targets of a method call can be considerably reduced [Pro02].

24 Visualizing the Results of Program Analyses

3.3 Data-Flow Analysis
Data-�ow analyses compute information for each program point about the data
that will reach this program point during execution. In general data-�ow anal-
ysis works by propagating locally available information over the paths in the
control �ow graph. We distinguish two kinds of �ow problems based on the
direction the information is propagated along the edges:

Forward-�ow problems: what can happen before control reaches this pro-
gram point, e.g. reaching de�nitions or available expressions?

Backward-�ow problem: What can happen after control leaves this program
point, e.g.: live variables, very busy expressions or reached uses?

Accordingly for each node v of the control-�ow graph we compute two func-
tions:

IN�v�: information about the state before the program point is executed.

OUT�v�: information about the state after the program point is executed.

3.3.1 Available Expressions
As an example of a forward-�ow problem we look at the computation of avail-
able expressions. A binary expression e1 op e2 is available at program point
p if it has been computed before, i.e. it has to be computed along every path
by which p can be reached. Assume that the expression e occurs at program
point p and is available on all incoming paths. Let p1; : : : ; pn be the program
points where the expression was computed before. Then the program can be
optimized by inserting an assignment x=e to a new temporary variable x before
each program point p1; : : : ; pn and replacing all occurrences of e in p1; : : : ; pn
and in p by x. As a result the expression is only computed once and we avoid
avoid recomputation.
Let �V ; E; in; out� be a control-�ow graph and E the set of all binary expres-
sions which occur in the program. Furthermore we de�ne two functions GEN
and KILL: GEN;KILL : V ! LG�E�

GEN�v� �
8>>><>>>:
fe0je0 is a binary subexpression of eg if v � e
fe0je0 is a binary subexpression of e

and x does not occur in it g if v � x=e
; otherwise

KILL�v� �
(fe0je0 2 E and x occurs in e0g if v � x=e
; otherwise

Now the functions IN and OUT are computed by iterating over all nodes of
the control-�ow graph.

Algorithm 1 (Available Expressions)
IN�in� � ;
OUT�in� � ;
for all v 2 �V � fing� do
IN�v� � E
OUT�v� � �IN�v��KILL�v��[GEN�v�

while there are changes do
for all v 2 �V � fing� do

IN�v� � T�p;l;v�2E OUT�p�
OUT�v� � �IN�v��KILL�v��[GEN�v�

3.3 Data-Flow Analysis 25

Example: Available Expressions

To illustrate the algorithm we show the steps of the computation of available
expressions for the control-�ow graph in Figure 3.1 below.

GEN(in)={}
GEN(p1)={y+2}
GEN(p2)={n/2, 2*y, n/2+2*y}
GEN(p3)={n/2, 2*y, n/2-2*y}
GEN(p4)={}
GEN(out)={}

KILL(in)={}
KILL(p1)={}
KILL(p2)={x-2*y}
KILL(p3)={x-2*y}
KILL(p4)={y+2, 2*y, n/2+2*y,

n/2-2*y, x-2*y}
KILL(out)={}

x=n/2+2*y x=n/2-2*y

n>y+2

y=x-2*y

T

F

in

out

p1

p2 p3

p4

Figure 3.1: Example: Available expressions

Initialization:

E={y+2, n/2, 2*y, n/2+2*y, n/2-2*y, x-2*y}
IN(in)={} OUT(in)={}
IN(p1)=E OUT(p1)=V
IN(p2)=E OUT(p2)={y+2, n/2, 2*y, n/2+2*y, n/2-2*y}
IN(p3)=E OUT(p3)={y+2, n/2, 2*y, n/2+2*y, n/2-2*y}
IN(p4)=E OUT(p4)={n/2}
IN(out)=E OUT(out)=E

First Iteration:

IN(p1)={} OUT(p1)={y+2}
IN(p2)={y+2} OUT(p2)={y+2, n/2, 2*y, n/2+2*y}
IN(p3)={y+2} OUT(p3)={y+2, n/2, 2*y, n/2-2*y}
IN(p4)={y+2,n/2, 2*y } OUT(p4)={n/2}
IN(out)={n/2} OUT(out)={n/2}

Second Iteration:
In the second iteration no changes are computed for both functions. Thus the
�xpoint is reached.

3.3.2 Live Variables
As an example of a backward-�ow problem we discuss the computation of live
variables. A variable x is live at program point p
� if there is a path from p to p0 and x is used at p0, i.e. occurs in an

expression,

� and there is no rede�nition of x (assignment to x) along that path.

As before, we de�ne the two functions GEN;KILL : V ! LG�V�
KILL�v� �

(fxg if v � x=e
; otherwise

26 Visualizing the Results of Program Analyses

GEN�v� �
(fx0jx0 occurs in eg if v 2 fx=e; eg
; otherwise

Note, that for assignments the case x0 � x is possible.

Algorithm 2 (Live Variables)
for all v 2 V do
IN�v� � GEN�v�

while there are changes do
for all v 2 V do

OUT�v� � S�v;l;s�2E IN�s�
IN�v� � �OUT�v��KILL�v��[GEN�v�

Example: Live Variables

GEN(in)={} KILL(in)={}
GEN(p1)={n} KILL(p1)={}
GEN(p2)={n,y} KILL(p2)={}
GEN(p3)={n} KILL(p3)={n}
GEN(p4)={n} KILL(p4)={y}
GEN(out)={} KILL(out)={}

n=n-1 y=n+1

n>y

T

F

in

out

p2

p3

n>100
p1

p4

F

Figure 3.2: Example: Live Variables

Initialization:

IN=GEN

First Iteration:

OUT(in)={n} IN(in)={n}
OUT(p1)={n,y} IN(p1)={n,y}
OUT(p2)={n} IN(p2)={n,y}
OUT(p3)={n,y} IN(p3)={y,n}
OUT(p4)={n,y} IN(p4)={n}
OUT(out)={} IN(out)={}

Second Iteration:

OUT(in)={n} IN(in)={n}
OUT(p1)={n,y} IN(p1)={n,y}
OUT(p2)={y,n} IN(p2)={n,y}
OUT(p3)={n,y} IN(p3)={y,n}
OUT(p4)={n,y} IN(p4)={n}
OUT(out)={} IN(out)={}

Third Iteration:
In the second iteration no changes are computed for both functions. Thus the
�xpoint is reached.

3.4 Examples of Visualization of Analysis Results 27

3.4 Examples of Visualization of Analysis Results

Other static analyses include for example the computation of upper bounds of
the stack usage for each program point, as shown in Figure 1.6 in the introduc-
tion, the inference of types for all expressions in a program, or the computa-
tion of upper bounds of the worst case execution times for loops, functions or
complete programs.

In Figure 3.3 a control-�ow graph was drawn with the aiSee tool. Each program
point is annotated with live variables.

live

variable

value for

constant

propagation

Figure 3.3: Live variables shown with aiSee

Another tool to visualize graphs for program analysis is VISTA [Lab]. It can
combine di�erent graphs in a single view. In the example in Figure 3.4 control-
�ow graphs (CFG), data-dependency graphs (DDG) and control-dependency graphs
(CDG) are shown. In control-dependency graphs statements are only depen-
dent on their preceding condition or the entry node. CDG are similar to Jack-
son Diagrams in that they show the hierarchical dependency, but there is no
order on the children of a node. Compared to the layout algorithm for control-
�ow graph that we sketched in the previous chapter, the algorithms used by
VISTA are not application-speci�c, but general graph drawing algorithms.

28 Visualizing the Results of Program Analyses

CFGCFG CFG+DDGCFG+DDG DDG+CDGDDG+CDG

Figure 3.4: Di�erent dependency graphs drawn by VISTA

Chapter 4Chapter 4
Algorithm Animation

In the previous chapters the visualization of the structure of programs and of
the results of static program analysis has been discussed. Now we will look
at the behavior of programs and algorithms, i.e. what actually happens at
runtime. We will give a short history of algorithm animation, look at some
examples and then discuss some design issues. Next some principal architec-
tures of algorithm animation systems are characterized. Finally we discuss an
approach to the visualization of the abstract execution of algorithms.

4.1 What is it about?

Algorithm animation is the visualization of the behavior of an algorithm. The
term �animation� stems from the verb �to animate� which means �to bring to
live�. We refrain from de�ning the term �algorithm� 1 here. There are just
too many formal and informal de�nitions and we leave the dispute to others
([Mos01, Gur00]). No doubt, the Church-Turing Thesis, which states that every
algorithm can be computed by a Turing Machine [Tur36], constitutes a funda-
mental insight in computer science, but we certainly don't want to visualize
the execution of all kinds of algorithms on Turing Machines. Rather we prefer
computational models that are closer to the problem to be solved.

In all cases the execution of an algorithm by a real or mathematical machine
leads to a sequence of states. Each step of the algorithm results in a transition
from one state to another. Algorithm animations map each state into a visual
representation (image) and usually show the transitions as animations between
these images.

1The term �algorithm� is named after Abu Ja'far Muhammad ibn Musa Al-Khwarizmi, who
wrote around the year 840 a treatise on algebra and a treatise on arithmetical calculation with
Hindu-Arabic numerals. The Arabic text is lost but a Latin translation, Algoritmi de numero
Indorum (Al-Khwarizmi on the Hindu numerals), gave rise to the word algorithm deriving from
his name in the title.

30 Algorithm Animation

State 0

State 1

State 2

State n

Transition 1

Transition 2

Transition n

Image 0

Image 1

Image 2

Image n

Animated Transition 1

Animated Transition 2

Animated Transition n

Execution Mapping Animation

Figure 4.1: Algorithm Animation: Mapping states to images

If we take a closer look at the implementation of algorithm animation systems,
we will often �nd that there is an intermediate layer. The state is mapped
onto visual models, i.e. graphical objects or geometric data, which are then
rendered to produce the images. Using this intermediate layer animations can
be performed on the image level as before, but the real advantage of this ap-
proach is that the animations can be performed by continuous transformation
of a model to the subsequent model.

State 0

State 1

State 2

State n

Transition 1

Transition 2

Transition n

Image 0

Image 1

Image 2

Image n

Animated Transition 1

Animated Transition 2

Animated Transition n

Execution Mapping
Visual

Model

Model 0

Model 1

Model 2

Model n

Transform 1

Transform 2

Transform n

AnimationRendering

Figure 4.2: Algorithm Animation: Mapping states to models

The challenge of algorithm animation is to �nd the right models, i.e. appropri-
ate graphical abstractions for states and transitions between states.

4.2 Why do people animate algorithms?
Di�erent people have di�erent motivations for animating algorithm. These
motivations also have di�erent requirements of the animations and the way
they are produced.

Understanding, Teaching: Teachers visualize algorithms to explain them to
their students.

4.3 A Short History of Algorithm Animation 31

Design: Developers visualize algorithms to better communicate the ideas to
other experts.

Optimization: Developers visualize algorithms to better understand and �nd
possibilities to enhance them.

Debugging: Programmers use visualizations to �nd faults in their programs.

4.3 A Short History of Algorithm Animation
Allegedly, the �rst algorithm animations ever produced was a movie about list
processing with the language L6 [Knowlton:66]. In the sequel the educational
promises have been the main motivation for the production of other algorithm
animations [Hop74, Bae73]. But a real impetus of the �eld was the video �Sort-
ing Out Sorting� presented at the ACM SIGGRAPH Conference in 1981 [Bae81]
showing a race of 9 di�erent sorting algorithms. Each value of the list was
represented by a dot in a matrix as shown in Figure 4.3.

Position

V
a
lu

e

Position

V
a
lu

e

Figure 4.3: Matrix view: unsorted and sorted data

Based on experience with algorithm animations which have been developed
from scratch two seminal algorithm animation tools have been developed at
Brown University to ease the development of such animations: BALSA2[BS84]
by Marc Brown (later at MIT and DEC) and TANGO3[Sta90a] by John Stasko
(later at Georgia Tech). To some extend Brown and Stasko developed in the
following years at their new institutions other systems driven by the techno-
logical advancement in other areas, in particular 3D computer graphics and
networked computers.
BALSA introduced the concept of interesting events (IEs) and related to this the
use of several views on the same state. Later in BALSA-II [Bro88] step and stop
points were added. Finally in CAT4[BN96] and its successor JCAT [BR96] the
views were distributed on several computers. TANGO [Sta90a] implemented
the path-transition paradigm [Sta90c] to enable smooth, continuous and simul-
taneous animations of state transitions. TANGO is actually an interpreter for
animation commands. The idea was to implement algorithms with an arbitrary
programming languages and have them produce commands in the SAMBA lan-
guage as textual output. To this end the program usually would print these at

2Brown University Algorithm Simulator and Animator
3Transition-based Animation Generation
4Collaborative Active Textbook

32 Algorithm Animation

interesting program points either to standard output or into a �le. This output
was then fed post-mortem into the TANGO interpreter to produce the anima-
tion. To animate parallel algorithms a library called POLKA5 was developed
[SK93] and using POLKA an animation interpreter called SAMBA [Sta97] pro-
vided enabled post-mortem visualizations similar to TANGO. Traces were al-
ready used by PVM6 [Sun90] to visualize parallel programs post-mortem. There
traces can be collected at each computer and are merged and visualized later.

Marc Brown (and Marc Najork):
- Balsa (1985)
- Balsa II (1988)
- Zeus (1992)
- Anim3D, Zeus3D (1993)
- CAT (WWW, 1996), JCAT (1997)

John Stasko:

- XTango/Tango (1989)
- Polka + Samba (Frontend)
- Polka3D (1992)

Figure 4.4: O�spring of Balsa and Tango

Some seminal papers about the classical animation tools are contained in an
anthology on software visualization [SDBP98] published in 1998. Today there
exist many more algorithm animation systems which have been developed by
other researchers, e.g. Animal, CATAI, Daphne, Ganimal, Gasp, GeoWin, Jawaa,
Jeliot, Leonardo, Mocha, to name a few. An overview of the more recent devel-
opments in the �eld was previously published in a state-of-the-art survey on
software visualization [KS02].

4.4 Some animations produced by X-Tango
In Figure 4.5 screen dumps of the animations of algorithms for binary trees,
linked lists, bin packing and the n-queens problem are shown.
A binary tree is tree where each node has a maximum of 2 children. A binary
tree is natural if the left child is smaller than the right child and both chil-
dren are small than their parent node. Typical algorithm animations show the
insertion and deletion of nodes.
In a linked list each node has a pointer to the next element. The pointer to
the �rst element of the least is the head pointer. The next pointer of the last
element of the list is unde�ned (null). Typical algorithm animations show the
insertion or deletion of elements at the head or at the end as well as at any
other position of the list.
In the bin packing problem a container with �xed height has to be �lled with
boxes of di�erent sizes, such that a minimal amount of horizontal space is
used. Vertically boxes can be stacked on top of each other as long as the height
of each stack does not surpass the height of the container. There is an online
and o�ine version of this problem. For the online problem each box must be
placed before the next one is received, i.e. the number of boxes and the size
of each of these boxes are not known beforehand. For the o�ine problem the
number and sizes of each box are known before packing. Typical algorithm
animations show the next �t, �rst �t and best �t strategies.
For the n-queens problem n queens must be placed on a n � n chess board
such that they don't capture each other. A typical algorithm places the i-th
queen on the �rst �eld of the i-th row. If the queen is captured by one of
the previously placed queens, the queen is moved to the next �eld on the row.

5Parallel program-focused Object-oriented Low Key Animation
6Parallel Virtual Machine

4.4 Some animations produced by X-Tango 33

Otherwise the algorithm tries to place the i � 1-th queen recursively. If this
fails, the queen is moved to the next �eld and so on.

Search treesSearch trees

ListsLists

n-Queens Problemn-Queens Problem

BinpackingBinpacking

Figure 4.5: Various X-Tango animations

Figure 4.6 shows screen dumps of three animations of sorting algorithms: bub-
ble sort, quick sort and heap sort.

Bubble sort pairwise compares the elements in a sequence from left to right
and swaps them if the �rst element is larger than the second. At the end of the
�rst iteration the largest element is at the end of the sequence. The process is
repeated for the rest of the elements until no more elements are swapped.

Quick sort selects an element and splits the list such that the left part contains
all elements of smaller or equal value and the right part all larger elements.
Then these two parts are recursively sorted in the same way. In the animation
the recursively constructed parts are indicated by nested boxes.

A heap is a binary tree where the value of each node is larger than that of
each of its children. The heap sort algorithm constructs a binary tree and
establishes this heap property such that the largest element is at the root of
the tree. To get the second largest element the root is replaced by the rightmost
leaf of the tree and the tree is traversed to establish the heap property again.
The process is repeated until the tree is empty.

34 Algorithm Animation

HeapsortHeapsort

QuicksortQuicksortBubblesortBubblesort

Figure 4.6: X-Tango animations of sorting algorithms

4.5 3D for Algorithm Animation

There are di�erent reasons why people use 3D graphics for algorithm anima-
tions.

Aesthetics

Humans are used to three dimensions

Data structures or algorithms are inherently three-dimensional for 3D geom-
etry, e.g. triangulation

3D adds additional information to a 2D representation

Multiple views of an object

History

Figure 4.7 shows a screen dump of an algorithm animation of bubble sort im-
plemented with VRML and JavaScript. The third dimension is used to show
the history of the sort, i.e. the partially sorted sequences are shown along the
Z-axis.

4.6 Some Design Issues 35

Figure 4.7: Three-Dimensional animation of bubble sort

As another example look at the 3D Animation of the Shortest Path Algorithm
(SSSP Single Source Shortest Path) in Figure 4.8 which was produced with Zeus3D
[BN93]. In this animation the third dimension is used to display additional in-
formation, here costs. The graph is drawn in the XY plane, while the Z axis
indicates for each node the costs to get from the source node to this node.
Consequently, the source node has costs 0. At the end of the algorithm the
shortest-paths tree is shown where for each node the shortest path is the as-
cending path with lowest height.

1

2

3

4

Figure 4.8: 3D Animation of SSSP

4.6 Some Design Issues
How are invariants visualized? In the 3D-Heapsort the heap-property is shown

as follows: along each path the columns have increasing height.

How does focussing work? The active parts of the data structure can be drawn
in a certain color, a pointer can be placed next them, they can move to a
certain location on the screen, or their size can be increased (zooming).

36 Algorithm Animation

How is recursion displayed? The depth of a recursion and the di�erent func-
tions invoked can be displayed by frames, colors, and even sound.

What is the goal of the animation system? Should it be easy-to-use, compre-
hensible or powerful?

How are algorithm and animation coupled or separated? see next section.

4.7 Architectures of Algorithm Animation Tools

Adhoc Don't use a tool at all, implement everything from scratch.

Libraries Use at least libraries with graphical abstractions, control-elements,
etc.

Special datatypes Program the algorithm with datatypes which have built-in
visualizations

Post-Mortem Algorithm and visualization tool are two separate applications.
When the algorithm executed a trace or animation plan (typically not a
full-�edged programming language) is produced and later visualized by
a separate component.

Interesting Events Interesting events and multiple views Annotate essential
program points with interesting events. During execution these events
are sent to one or multiple views. The approach usually applies the MVC7

design pattern.

Declarative Annotations and algorithm are separated. There are two approaches.
The �rst is state mapping, where a demon watches state changes and up-
dates the visualization of the state accordingly. The second approach
is are constraints-based systems. They work in a similar way, but the
program to be visualized itself is written in a constraints-based language.

Semantics-Directed The algorithm is executed by a visual interpreter or de-
bugger which produces the visualizations automatically, but usually on a
low level of abstraction.

Both the declarative and the semantics-directed approach are usually non-
intrusive, i.e. the program code must not be changed to get a visualization
of the program.
The following two examples are taken from a recent paper that compares the
declarative (state mapping) and the interesting events approach [DFS02].

4.7.1 Example: Interesting Events in POLKA
Using POLKA program points are annotated at essential program points with
calls to methods. These annotations are called interesting events (IEs). When-
ever the program point is reached during the execution of the program point,
the method sends information about the current program state to all views.

7Modell-View-Controller

4.7 Architectures of Algorithm Animation Tools 37

void main() {
bsort.SendAlgoEvt("Input",n,v);
for(j=n; j>0; j--)

for(i=1; i<j; i++)
if (v[i]>v[i+1])

{ int temp= v[i];
v[i]=v[i+1];
v[i+1]=temp;
bsort.SendAlgoEvt("Exchange",i,i+1);

}
}

4.7.2 Example: Declarations in LEONARDO

LEONARDO[DF] integrates both a C and a Pascal compiler together with a
source code editor. It uses a virtual machine with invertible instructions to
visualize a program and provide undo/redo functions of every execution step.
The visualization is separated from the program by writing the visualization
declarations are as comments in the program code. The declarations are writ-
ten in a kind of logic programming language called ALPHA. It describes a set of
visual objects. An alpha program consists of a sequence of predicates that de-
�ne these objects and their relationships. Each predicate is de�ned by a head-
body-pair where the head speci�es the name and formal parameters while the
body speci�es the computation.

void main() {
for(j=n; j>0; j--)

for(i=1; i<j; i++)
if (v[i]>v[i+1])

{ int temp= v[i];
v[i]=v[i+1];
v[i+1]=temp;

}
}

/** View(Out 1); Rectangle(Out ID, Out X, Out Y, Out L Out H, 1);
For N: InRange(N,0,n-1)

Assign X=20+20*N Y=20 L=15 H=15*v[N] ID=N;
**/

38 Algorithm Animation

4.8 Abstract Algorithm Animation

Data Acquisition N Analysis N Visualization

Execution

- Interesting Events

- Trace

- State Mapping

Execution

- Interesting Events

- Trace

- State Mapping

Structure

- Program code

- Spezification

- Documentation

Structure

- Program code

- Spezification

- Documentation

Filtering

Static Analysis

Metrics

AnimationAnimation

Annotated

Graph

Annotated

Graph

Focussing

Figure 4.9: Using program analysis to focus algorithm animations

Focussing is a big problem in algorithm animation. What part of the data
structure should be displayed on the screen? Not all data structures should
be displayed at all times and often the amount of data makes it impossible to
show all data simultaneously. So we have to manage the screen estate carefully.

Usually at each program point only a small fraction of data can be accessed.
One solution to determine this fraction before run-time by using static pro-
gram analyses which compute information about the accessible data structures
for each program point. Such an analysis called has been developed by Sagiv,
Reps and Wilhelm [SRW96, SRW99] and is called shape analysis. It computes an
abstract representation of linked data structures, which focusses on the active
parts of this structures. For each program point it yields a �nite set of shape
graphs.

Braune and Wilhelm suggest to animate the abstract execution based on shape
graphs [BW00]. They call the resulting animations algorithm explanations to
emphasize that they show the invariants of the data structures at each program
point. Recently the approach has been extended to also show non-structural
invariants [WMS02].

4.8 Abstract Algorithm Animation 39

h

p q

h

p q

List at runtime:

Abstract shape graph:

1 or more nodes

Possible subsequent abstract shape graphs for q := q->next:
p q

h

h

p q

Figure 4.10: Abstract execution of q := q->next

In Figure 4.10 the abstract execution of a program point is shown. The ab-
stract shape graph before the execution shows that the pointer q points at an
elements immediately after the element pointed to by p. Furthermore there
is at least one element after the element pointed to by q. If we now execute
the assignment q:=q->next, then there are two possible subsequent abstract
shape graphs. The �rst shows the case that there was exactly one element
more in the list, while the second shape graph represents the case where there
where at least two more elements.
Note, that a transition from an abstract state as1 to an abstract state as2 is
only legal, if a transition from a concrete state cs1 to a concrete state cs2 exists
where cs1 is represented by as1 and cs2 by as2. Visual abstract execution must
only show legal transitions.

40 Algorithm Animation

Bibliography

[Bae73] R. Baecker. Towards Animating Computer Programs: A First Progress
Report. In Proceedings of the Third NRC Man-Computer Communica-
tions Conference, 1973.

[Bae81] R. Baecker. Sorting out Sorting. 30 minute color �lm (developed with
assistance of Dave Sherman, distributed by Morgan Kaufmann Pub.),
1981.

[BK01] Sarita Bassil and Rudolf K. Keller. Software Visualization Tools: Sur-
vey and Analysis. In Proceedings of the Ninth International Workshop
on Program Comprehension (IWPC2001), Toronto, Ontario, Canada,
2001.

[BM90] Ronald M. Baecker and Aaron Marcus. Human Factors and Typog-
raphy for More Readable Programs. Addison-Wesley, Reading, MA,
1990.

[BM98] Ronald M. Baecker and Aaron Marcus. Printing and publishing c pro-
grams. In Software Visualization � Programming as a Multimedia Ex-
perience [SDBP98]. 1998.

[BN93] Marc H. Brown and Marc Najork. Algorithm animation using 3d inter-
active graphics. In Proceedings of ACM Symposium on User Interface
Software and Technology, 1993.

[BN96] M. Brown and M. Najork. Collaborative Active Textbooks: A Web-
Based Algorithm Animation System for an Electronic Classroom. In
Proceedings of the 1996 IEEE International Symposium on Visual Lan-
guages, Boulder, CO, 1996.

[BR96] M. Brown and R. Raisamo. JCAT: Collaborative Active Textbooks Us-
ing Java. In Proceedings of CompuGraphics'96, Paris, France, 1996.

[Bro88] M. Brown. Exploring Algorithms with Balsa-II. Computer, 21(5), 1988.

[BS84] M. Brown and R. Sedgewick. A system for Algorithm Animation. In
Proceedings of ACM SIGGRAPH'84, Minneapolis, MN, 1984.

[BW00] B. Braune and R. Wilhelm. Focussing in algorithm explanation. Trans-
actions on Visualization and Computer Graphics, 6(1), 2000.

[Chi00] Ed H. Chi. A taxonomy of visualization techniques using the data
state reference model. In Proceedings of the Symposium on Informa-
tion Visualization (InfoVis '00), Salt Lake City, Utah, 2000. IEEE Press.

[DF] Camil Demetrescu and Irene Finocchi. http://www.dis.uniroma1.
it/�demetres/Leonardo".

42 Bibliography

[DFS02] Camil Demetrescu, Irene Finocchi, and John Stasko. Specifying Al-
gorithm Visualizations: Interesting Events or State Mapping? In
Proceedings of Dagstuhl Seminar on Software Visualization [Die02b].
2002.

[Die02a] Stephan Diehl. Future Perspectives. In Proceedings of Dagstuhl Semi-
nar on Software Visualization [Die02b]. 2002.

[Die02b] Stephan Diehl, editor. Software Visualization, volume 2269 of LNCS
State-of-the-Art Survey. Springer Verlag, 2002.

[EB02] Alexander A. Evstiougov-Babaev. Call Graph and Control Flow Graph
Visualization for Developers of Embedded Applications. In Proceed-
ings of Dagstuhl Seminar on Software Visualization [Die02b]. 2002.

[Gur00] Yuri Gurevich. Sequential abstract-state machines capture sequential
algorithms. ACM Transactions on Computational Logic (TOCL), 1(1),
2000.

[GvN47] H. H. Goldstine and J. von Neumann. Planning and Coding of Prob-
lems for an Electronic Computing Instrument, 1947. Part II, vol I of a
report prepared for the U.S. Army Ord. Dept., reprinted in [Tau65].

[HDS02] Christopher Hundhausen, Sarah Douglas, and John Stasko. A Meta-
Study of Algorithm Visualization E�ectiveness. Journal of Visual Lan-
guages and Computing, 13(2), 2002.

[Hop74] F. Hopgood. Computer Animation Used as a Tool in Teaching Com-
puter Science. In Proceedings IFIP Congress, 1974.

[IS73] I.Nassi and B. Shneiderman. Flowchart Techniques for Structured
Programming. SIGPLAN Notices, 12, August 1973.

[Jac75] Michael Jackson. Principles of Program Design. Academic Press, 1975.

[JPH�99] C. Johnson, S.G. Parker, C. Hansen, G.L. Kindlmann, and Y. Livnat.
Interactive simulation and visualization. Computer, 12, 1999.

[Knu84] D. E. Knuth. Literate Programming. The Computer Journal, 27(2),
1984.

[Knu92] D. E. Knuth. Literate Programming. Center of the Study of Language
and Information - Lecture Notes, No. 27. CSLI Publications, Stanford,
California, 1992.

[Kos02] Rainer Koschke. Software Visualization for Reverse Engineering. In
Proceedings of Dagstuhl Seminar on Software Visualization [Die02b].
2002.

[KS02] Andreas Kerren and John T. Stasko. Algorithm Animation. In Pro-
ceedings of Dagstuhl Seminar on Software Visualization [Die02b].
2002.

[Lab] Cigital Labs. http://www.cigitallabs.com/research/demos/
vista/.

[Mos01] Yiannis N. Moschovakis. What is an Algorithm? In Bjorn Engquist and
Wilfried Schmid, editors, Mathematics Unlimited � 2001 and Beyond.
Springer Verlag, 2001.

43

[Mye90] B. Myers. Taxonomies of visual programming and program visualisa-
tion. Journal of Visual Languages and Computing, 1, 1990.

[OWE96] M. J. Oudshoorn, H. Widjaja, and S. K. Ellershaw. Aspects and tax-
onomy of program visualisation. In Peter D. Eades and Kang Zhang,
editors, Software Visualisation, volume 7, pages 3�26. World Scien-
ti�c, Singapore, 1996.

[PBS93] B. A. Price, R. Baecker, and I. Small. A Principled Taxonomy of Soft-
ware Visualization. Journal of Visual Languages and Computing,
4(3):211�266, 1993.

[Pro02] Christian Probst. A Demand-Driven Solver for Constraint-Based Con-
trol Flow Analysis. Phd thesis, University of Saarland, Saarbrücken
(Germany), 2002.

[RR93] G.C. Roman and K.C. Roman. A taxonomy of program visualization
systems. Computer, December 1993.

[SDBP98] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price. Software
Visualization. MIT Press, 1998.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of 1996 IEEE Conference
on Visual Languages, Boulder, CO, 1996. IEEE Press.

[SK93] J. Stasko and E. Kraemer. A Methodology for Building Application-
Speci�c Visualizations of Parallel Programs. Journal of Parallel and
Distributed Computing, 18(2), 1993.

[SRW96] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. In Proceedings of the 23rd
ACM SIGACT-SIGPLAN Symposium on Priciples of Programming Lan-
guages, St. Petersburg Beach, Florida, 1996.

[SRW99] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape-analysis via 3-
valued logic. In Proceedings of the 26th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, San Antonio, Texas,
1999.

[Sta90a] J. Stasko. TANGO: A Framework and System for Algorithm Anima-
tion. Computer, 23(9), 1990.

[Sta90b] J. T. Stasko. TANGO: A Framework and System for Algorithm Anima-
tion. Computer, 23(9):27�39, 1990.

[Sta90c] J. T. Stasko. The Path-Transition Paradigm: A Practical Methodology
for Adding Animation to Program Interfaces. Journal of Visual Lan-
guages and Computing, 1(3):213�236, 1990.

[Sta97] J. Stasko. Using Student-Built Algorithm Animations as Learning
Aids. In Proceedings of the 1998 ACM SIGCSE Conference, San Jose,
CA, 1997.

[Sun90] V. Sunderam. PVM: A Framework for Parallel Distributed Computing.
Concurrency: Practice & Experience, 2(4), 1990.

[Tau65] A. H. Taub, editor. John von Neumann: Collected Works, volume V:
Design of Computers, Theory of Automata and Numerical Analysis.
Pergamon Press, New York, 1965.

44 Bibliography

[Tho81] C. Thomassen. Kuratowski's theorem. Journal of Graph Theory, 5,
1981.

[Tur36] Alan M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. In Proceedings of the London Mathematical
Society, Series 2, volume 42, 1936.

[WMS02] Reinhard Wilhelm, Tomasz Müldner, and Raimund Seidel. Algorithm
Explanation: Visualizing Abstract States and Invariants. In Proceed-
ings of Dagstuhl Seminar on Software Visualization [Die02b]. 2002.

