
1

Software
Visualization

Visual
Debugging

Visual Debugging

• What is „Debugging“
• Visualizing

– Program State
• Incremental interactive unfolding (DDD)
• Abstract representations (traversal-based)
• Focusing: memory graphs
• Reference pattern extraction

– Test Results (test suites)
• Dices
• Participation in coverage and failures

Memory

Code

Debugging

• Debugging
= Detecting, locating and fixing errors in

programs
• Common Tasks [see Pan&DeMillo&Spafford:97]

– Identify statements involved
– Select statements which might contain faults
– Hypothesize about suspicious faults
– Restore program variables to a specific state

Data Display Debugger DDD

• Visualize Program State
• Interactive debugger

– Execute program in a defined environment
– Stop execution at specified situations

(conditional break points)
– Inspect program state
– Modify program state and continue execution

See [Zeller:IFUE01,Zeller&Lütkehaus:96]

Nested Boxes
(gdb) display *tree
*tree = { fvalue = 7, _name = 0x8049e88 "Ada",

_left = 0x804d7d8, _right = 0x0,
_left_thread = false, right_thread = false,
date = {day of week = Thu, day = 1, month = 1, year = 1970,

_vptr. = 0x8049f78 <Date virtual tablei>},
static shared = 4711}

(gdb) _

Incremental, Interactive
Unfolding of Data Structures

2

Aliasing Detection Sharing Nodes Traversal-based Visualization

• Typical visualization produced by a visual
debugger

http://www.cs.princeton.edu/~jlk/viz

Traversal-based Visualization
• Traverse linked data structure
• Match found data with rules:

– rules produce visual objects (model),
– these are then rendered by a separate component.

Example Rule

Op plusPattern =
{ int op = Op.PLUS; } :

node=TreeNode(icon=“plus.bmp“),
TreeEdge(from=parent, to=node),

plusPattern.left(parent=node),
plusPattern.right(parent=node);

Here: class Op { final static int PLUS=1; int op; Expr left, right ...}

class TreeNode { String icon; ... }
class TreeEdge { TreeNode from, to; ... }

Class of Objects to apply rule toClass of Objects to apply rule to

Name of ruleName of rule
Pattern to match object withPattern to match object with

Create objects of
visual model
Create objects of
visual model

Traverse referenced
objects, pass node
in environment

Traverse referenced
objects, pass node
in environment

What if the data structures to be
visualized are really large?

• Focus on modified parts (c.f. abstract
algorithm animation)

• Group elements, form collections of data
with similar structure.

Memory Graphs

• represent the memory of a program.
• Nodes = memory content
• Arrows = possible access paths.
• unfolding all accessible data structures in the program.

All common data structures like structs, unions, arrays
or pointers are properly represented.

• Memory graph of GNU compiler has about 40.000
nodes !!!

• Applications
– common subgraphs to isolate differences between program

states.

3

Reference Pattern Extraction
Jinsight (http://www.research.ibm.com/jinsight/)

• At each level unfolding groups objects of the same class
together.

Slicing

• Static slice = set of all program points that may affect
the value of a particular output or a instance of a
variable at a certain program point. data flow analysis

• Dynamic slice = set of all program points that for a
given input actually affect a program point or instance
of a variable at a certain program point.

• Execution slice = set of all program points executed for
a given input.

• Dice = set difference of two slices

X-Slice
http://xsuds.argreenhouse.com/html-man/xslice.html#770301

• X-Slice is a
slicing and dicing
tool for C
programs.

• the dice
represents the
intersection of a
failing test case
and a sucessful
test case.

Coverage and Tests Discrete Approach

• Input
– Source code
– For each test case

• its pass/fail status
• statements that it executes

• Display statements in program according to the
test cases that execute them

On
ly

 fa
ile

d
tes

t c
as

es

Bo
th

 pa
ss

ed
 &

fa
ile

d
tes

t c
as

es

On
ly

 p
as

se
d

tes
t c

as
es

Statements
executed by:

4

Example

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Test Cases

Pass Status: P P P P P F

h
h
h

h
h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h

h

h
h
h

h

h

h
h
h

h
h

h

Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Pass Status: P P P P P F

h
h
h

h
h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h

h

h
h
h

h

h

h
h
h

h
h

h

Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}

Continuous Approach

• Distribute statements executed by both passed and
failed test cases over spectrum

• Indicate the relative success rate of each statement
by its hue

On
ly

 fa
ile

d
tes

t c
as

es

Bo
th

 pa
ss

ed
 &

fa
ile

d
tes

t c
as

es

On
ly

 p
as

se
d

tes
t c

as
es

Discrete Approach:

Continuous Approach:

Hue

m = y;

10 failed test cases

20 passed test cases

10

200

= 100%

= 10 %

a = b;

10 failed test cases
10

= 100%

0 passed test cases
10

= 0%

c = d;

1 failed test cases
10

= 10%

0 passed test cases
10

= 0%

Brightness

• Using total percentage of test
cases that execute a statement
may cause important
statements to be overlooked m = y;

10 failed test cases

20 passed test cases

10

200

= 100%

= 10 %

30 total test cases = 14%
210

• Instead we use the higher of
the two independent
percentages

Brightness

m = y;

10 failed test cases

20 passed test cases

10

200

= 100%

= 10 %

m = y;

10 failed test cases
10

= 100%

0 passed test cases
10

= 0%

m = y;

1 failed test cases
10

= 10%

0 passed test cases
10

= 0%

5

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}

Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Pass Status: P P P P P F

h
h
h

h
h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h

h

h
h
h

h

h

h
h
h

h
h

h

Test Cases

Scalability
• Large programs difficult to display
• Use the line-of-pixels, SeeSoft, view
• Each character in the source is displayed as a pixel

mid() {
int x,y,z,m;
read(“Enter 3 numbers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = y;
else if (x>z)

m = x;
print(“Middle number is:”, m);

}

}[Eick,Steffen,Sumner,
TSE 1992]

Tarantula Visualization Pipeline

Program Code,Color
coding, „SeeSoft“
Approach

Text, Nested Boxes,
GraphsVisualization

Slicing and DicingAlias Detection,
Common Subgraph
of Memory graphs

Filtering

Trace program
execution, visited
program points,
success or failure

Read Program
MemoryData Acquisition

Memory Code

