
Probabilistic CEGAR⋆

Holger Hermanns, Björn Wachter, Lijun Zhang

Universität des Saarlandes, Saarbrücken, Germany
{hermanns,bwachter,zhang}@cs.uni-sb.de

Abstract. Counterexample-guided abstraction refinement (CEGAR)
has been en vogue for the automatic verification of very large systems
in the past years. When trying to apply CEGAR to the verification of
probabilistic systems, various foundational questions arise. This paper
explores them in the context of predicate abstraction.

1 Introduction

Probabilistic behavioral descriptions are widely used to analyze and verify sys-
tems that exhibit “quantified uncertainty”, such as embedded, networked, or bio-
logical systems. The semantic model for such systems often are Markov chains or
Markov decision processes. We here consider homogeneous discrete-time Markov
chains (MCs) and Markov decision processes (MDPs). Properties of these sys-
tems can be specified by formulas in temporal logics such as PCTL [1], where for
instance quantitative probabilistic reachability (“the probability to reach a set
of bad states is at most 3%”) is expressible. Model checking algorithms for such
logics have been devised mainly for finite-state MCs [1] and MDPs [2], and effec-
tive tool support is provided by probabilistic model checkers such as Prism [3] or
Mrmc [4]. Despite its remarkable versatility, the approach is limited by the state
explosion problem, aggravated by the cost of numerical computation compared
to Boolean CTL model checking.

Predicate abstraction [5] is a method for creating finite abstract models of
non-probabilistic systems where symbolic expressions, so-called predicates, in-
duce a partitioning of its (potentially infinite) state space into a finite number of
regions. For automation, it is typically coupled [6, 7] with counterexample-guided
abstraction refinement (CEGAR) [8] where an initially very coarse abstraction
is refined using diagnostic information (predicates) derived from abstract coun-
terexamples, until either the property is proved or refuted.

In this paper, we discuss how counterexample-guided abstraction refinement
can be developed in a probabilistic setting. Predicate abstraction without ab-
straction refinement has been presented in [9] for a guarded command language
whose concrete semantics maps to MDPs – more precisely, to probabilistic au-
tomata [10]. This is the natural basis for our present work. We restrict our

⋆ This work is supported by DFG as part of the Transregional Collaborative Research
Center SFB/TR 14 AVACS and by the NWO-DFG bilateral project VOSS.

treatment to probabilistic reachability and aim to determine if the probability
to reach a set of bad states exceeds a given threshold.

The core challenge of developing probabilistic CEGAR lies in the notion and
analysis of counterexamples. In the traditional setting, an abstract counterex-
ample is a single finite path (to some bad state) and counterexample analysis
consists in checking if the concrete model exhibits a corresponding error path.
In contrast, a counterexample to a probabilistic reachability property can be
viewed as a finite, but generally cyclic, Markov chain [11]. Due to these cycles,
probabilistic counterexample analysis is not directly amenable to conventional
methods. We circumvent this problem, by preprocessing the abstract counterex-
ample using the strongest evidence idea of [12]: We generate a finite set afp of
abstract finite paths that together carry enough abstract probability mass, and
formulate the problem of computing the realizable probability mass of afp in
terms of a weighted MAX-SMT problem [13]. The set afp is built incremen-
tally in an on-the-fly manner, until either enough probability is realizable, or
afp cannot be enriched with sufficient probability mass to make the probability
threshold realizable, in which case the counterexample is spurious.

These ingredients result in a theory for probabilistic CEGAR. We have eval-
uated the approach on various case studies. Indeed, CEGAR entirely mechanizes
the verification process: predicates are added mechanically on demand based on
counterexample analysis. To this end, our implementation employs interpola-
tion [14] to generate new predicates from spurious paths.

Related Work. Aljazzar & Hermanns [15] and Katoen & Han [12] introduced
concepts and algorithms to deal with probabilistic counterexamples. However,
both papers do not consider counterexamples in the context of abstraction.

We are not aware of previous work that combines abstraction refinement with
predicate abstraction for probabilistic systems. Up to now different abstraction
refinement approaches for finite-state probabilistic models have been proposed:
among those [16–19] do not exploit counterexamples, while Chatterjee et. al [11]
apply CEGAR to finite probabilistic two-player game structures. Although finite
MDPs are a special case of these game structures, our work differs from [11] since
it considers infinite-state models, stays more in the classical predicate abstraction
realm, and is supplemented with a running implementation.

Outline. We briefly review our previous work on predicate abstraction for prob-
abilistic programs in Section 2. The contributions of this paper, counterexample
analysis and abstraction refinement for probabilistic programs, are presented in
Section 3. Experimental results are presented in Section 4.

2 Preliminaries

Probabilistic Programs. We consider probabilistic programs in a guarded com-
mand language [9] which is inspired by the PRISM [3] input language, but
supports infinite data domains. We fix a finite set of program variables X and
a finite set of actions Act. Variables are typed in a definition such as i : int.
We denote the set of expressions over the set of variables V by ExprV and the

set of Boolean expression over V by BExprV . An assignment is a total function
E : X → ExprX from variables x ∈ X to expressions E(x). Given an expression
e ∈ ExprX and an assignment E, we denote by e[X/E(X)] the expression obtained
from e by substituting each occurrence of a variable x with E(x).

A guarded command c consists of an action a, a guard g ∈ BExprX and as-

signments Eu1
, ..., Euk

weighted with probabilities p1, ..., pk where
∑k

i=1 pi = 1.
We denote by X′ = E the simultaneous update E of variables X. With the i-th
update of c, we associate a unique update label ui ∈ U. Updates are syntacti-
cally separated by a “+”: [a] g → p1 : X′=Eu1

+ . . . + pk : X′=Euk
. If the guard

is satisfied, the i-th update will be executed with probability pi. For c, we write
ac for its action, g

c
for its guard. If c is clear from the context, we write a, g

and ui instead. We define the weakest liberal precondition of an expression with
respect to an update as follows: WPEu

(e) = e[X/Eu(X)].

A program P = (X, I, C) consists of a Boolean expression I ∈ BExprX that
defines the set of initial states and a set of guarded commands C. The program
has distinctly labeled guarded commands – two different commands have distinct
actions and update labels.

Probabilistic Automata. The semantics of a probabilistic program is a proba-
bilistic automaton. To enable reconstruction of commands and updates from
the semantics, automata are decorated with labels from two alphabets: an ac-
tion alphabet Act for commands, and an update alphabet U for probabilistic
choices. A simple distribution π over Σ is a function π : Σ → [0, 1] such that
∑

s∈Σ π(s) = 1. Let DistrΣ denote the set of all simple distributions over Σ.

We decorate the distribution with the alphabet U as follows: an (update-
labeled) distribution π over U × Σ is a distribution π : U × Σ → [0, 1] such that
(i) the update alphabet is right-unique, i.e., π(u, s) > 0 and π(u, s′) implies that
s = s′ and (ii)

∑

u∈U

∑

s∈Σ π(u, s) = 1. Let Distr(U,Σ) denote the set of update-
labeled distributions over U × Σ. For π ∈ Distr(U,Σ), we call the set of states
Supp(π) = {(u, s) | π(u, s) > 0} the support of π.

A probabilistic update automaton M is a tuple (Σ, I,Act, U, R) where Σ is
a set of states, I ⊆ Σ is a set of initial states, Act is the action alphabet, U
is the update alphabet, and R ⊆ Σ × Act × Distr(U,Σ) the probabilistic tran-
sition relation. M is called finite if Σ is finite. A finite path is a finite se-
quence (s0, a0, u0, π0), (s1, a1, u1, π1), . . . sn such that s0 ∈ I, (si, ai, πi) ∈ R, and
(ui, si+1) ∈ Supp(πi) for all i = 0, . . . , n−1. Let Pathfin(M) denote the set of all
finite paths over M. We write σ ≤ σ′, if the finite path σ is a prefix of σ′. A finite
path σ is maximal if σ ≤ σ′ implies that σ = σ′. An infinite path σ is an infinite
sequence (s0, a0, u0, π0), (s1, a1, u1, π1), . . . starting with an initial state s0 ∈ I,
(si, ai, πi) ∈ R, and (ui, si+1) ∈ Supp(πi) for all i = 0, 1, Let Path(M)
denote the set of all infinite or maximal paths over M. For σ ∈ Pathfin , let
C(σ) = {σ′ ∈ Path(M) | σ ≤ σ′} denote the cylinder set for σ. For σ ∈ Path,
let σ[i] = si denote the i + 1-th state of σ.

Our definition of probabilistic update automata adds labels at probabilis-
tic choices to the probabilistic automata of [10]. This does not give additional
modeling power, it rather allows us to develop the Cegar approach succinctly.

Dropping the labels of the distributions, M induces a probabilistic automaton
ind(M) in the style of [10] as follows: replace every update-labeled distribution
π by its induced distribution ind(π), defined by ind(π)(s) =

∑

u∈U π(u, s). If the
context is clear, we use M and ind(M) interchangeably.

An adversary is a resolution of non-determinism. In general, an adversary A
of an automaton M is a function from paths to pairs of actions and distributions.
We let Dδ denote the Dirac distribution defined by: Dδ(δ) = 1 where δ is a special
symbol for termination. An adversary A is called simple if it only looks at the last
state in a path, i.e. if it is a function A : Σ → (Act×DistrΣ)∪{Dδ}. Note that if
A(s) = Dδ, the adversary A decides to stop at state s. For a given state s ∈ Σ and
an adversary A, let PA

s denote the corresponding probability measure [20] over
Path(M). Given a probabilistic automaton M, a simple adversary A induces
an MC MA = (Σ, I,Act,RA) where RA = {(s, a, π) ∈ R | A(s) = (a, π)}. Note
s has no outgoing transitions if A(s) = Dδ.

MCs and MDPs are special cases of probabilistic automata. An MC is a
deterministic probabilistic automaton, i.e. an automaton where for every state s
there is at most one transition (s, a, π) ∈ R. An MDP is an action-deterministic
probabilistic automaton, i.e. an automaton where for every pair s ∈ Σ and
a ∈ Act, there exists at most one π with (s, a, π) ∈ R.

Program Semantics. A state over variables X is a type-consistent total function
from variables in X to their semantic domains. We denote the set of states by Σ(X)
or Σ for short and a single state by s. For an expression e ∈ ExprX, we denote by
JeKs its valuation in state s. The valuation of a Boolean expression e is a value
JeKs ∈ {0, 1} (0 for “false”, 1 for “true”). For a Boolean expression e and a state
s, we write s ² e iff JeKs = 1. Semantic brackets around a Boolean expression e

without a subscript denote the set of states fulfilling e, i.e. JeK = {s ∈ Σ | s ² e}.

The semantics of a program P = (X, I, C) is the probabilistic update automa-
ton M = (Σ, I,Act,R) with set of states Σ = Σ(X), set of initial states I = JIK,
set of actions Act = {ac | c ∈ C}, and transitions induced by the guarded com-
mands R =

⋃

c∈CJcK where (s, a, π) ∈ JcK if s ² g and π such that π(ui, s
′) = pi

if s′(x) = JEui
(x)Ks for all x ∈ X.

Properties. In this paper, we consider probabilistic reachability properties which
we write as Reach≤p(e) where p ∈ [0, 1] is a probability value, and the Boolean
expression e ∈ BExprX describes the states to be reached. For a state s and
an adversary A, let pA

s (;e) = PA
s ({σ ∈ Path(M) | ∃i ∈ N σ[i] ² e}) be the

probability of set of paths reaching an e-state. Then, Reach≤p(e) is satisfied by
s if pA

s (;e) ≤ p for all adversary A, and it is satisfied by the model if it is sat-
isfied by all initial states. Algorithmically, it is sufficient to only consider simple
adversaries [2], as extremal probabilities are already attained among them.

Predicate Abstraction. Predicates are Boolean expressions over the program vari-
ables. A predicate ϕ stands for the set of states satisfying it, namely JϕK. We fix
a set of predicates P = {ϕ1, ..., ϕn}. The set P partitions the states into disjoint
sets characterized by which predicates hold and which not. An equivalence class
can therefore be represented by a bit vector of length n. We call such a bit-
vector an abstract state and denote the set of abstract states by Σ♯. We define

a state-abstraction function by: hP(s) = (Jϕ1Ks, ..., JϕnKs). For a given s♯ ∈ Σ♯,
we call the corresponding equivalence class the concretization of s♯ and denote it
by γ(s♯). The concretization of s♯ is characterized by a Boolean expression F (s♯)
such that γ(s♯) = JF (s♯)K. F (s♯) is exactly the conjunction containing satisfied
predicates as positive literals and unsatisfied ones as negated literals.

We recall predicate abstraction of probabilistic programs [9]: The state ab-
straction hP induces a quotient automaton, denoted by M♯ = (Σ♯, I♯, Act, U, R♯)
with the set of initial states I♯ = {h(s) | s ∈ I}, and transitions R♯ =
{(h(s), a, h(π)) | (s, a, π) ∈ R} where h(π) = {(u, h(s)) : p | π(u, s) = p}. If
the reachability property is satisfied by the quotient automaton M♯, we can
safely conclude that it holds for the original model M as well. The soundness
follows from the fact that the quotient automaton M♯ simulates M.

3 Refinement

In this section, we present a novel refinement scheme for probabilistic programs
based on CEGAR (counterexample-guided abstraction refinement). The plain
CEGAR approach is the obvious strategy also to follow in the probabilistic case:
start with a coarse abstraction and successively refine it using predicates learned
from spurious counterexamples until either a realizable counterexample is found
or the abstract model is precise enough to establish the property. However, in
order to put refinement to work for probabilistic models, several questions of
both principal and practical nature need to be answered. We (i) need to identify
what an abstract counterexample constitutes, (ii) lift it to the concrete system,
(iii) decide if it is spurious, and (iv) identify appropriate predicates to refine the
abstract quotient automaton.

Counterexamples for Quotient Automata. Intuitively, a counterexample
is a pair of an initial state and an adversary that violates the property to be
checked. This pair induces an MC in the abstract setting. In the sequel, we fix the
probabilistic update automaton M and the reachability property Reach≤p(e).
Let M♯ be the quotient automaton of M.

Definition 1. A counterexample for Reach≤p(e) is a pair (s♯, A♯) where s♯ ∈ I♯

is an initial state and A♯ is an adversary such that PA♯

s♯ (;e) > p. In this case,
A♯ is called a counter-adversary.

Spurious Counterexamples. In the non-probabilistic setting, a counterexam-
ple is a path, which is called spurious if there does not exist a corresponding con-
crete path. We now introduce the notion of spurious counterexamples for prob-
abilistic automata based on the concretization of an abstract counter-adversary
and an abstract counterexample.

Concretization of Counter-adversaries. For a counter-adversary A♯ in the quo-
tient M♯, its concretization γ(A♯) is an adversary in M defined by: γ(A♯)(s)
equals (ac, π) if A♯(s♯) = (ac, π

♯) with s♯ = h(s) and π♯ = h(π), otherwise Dδ.
In case of γ(A♯)(s) = Dδ, the adversary A♯ has chosen (ac, π

♯) from s♯, how-
ever s does not satisfy the guard g

c
associated with c. Thus, we let γ(A♯) stop

at state s, as no corresponding concretization exists. Recall that the program
has distinctly labeled guarded commands, thus we can choose at most one cor-
responding outgoing concrete transition. For illustration, consider the fragment
of a probabilistic automaton and its corresponding quotient automaton in the
figure below. If the adversary A♯ chooses ac2 at state s♯

2, the concretization γ(A♯)
chooses also action ac2 at state s.

.8.8

s
♯
1

s
♯
3s

♯
2

ac2 ac2

ac1

ac1

s

u2, .3

u3, .5

u1, .2
u4, .2u4, .2

u3, .5
u1, .3

ac0 ac0
u1, .2

Concretization of Counterexamples. Now consider a counterexample (s♯, A♯). Its
concretization, denoted γ(s♯, A♯), is the set: {(s,A) | A = γ(A♯)∧s ∈ (I∩γ(s♯))}.
Directly linked to the cardinality of the initial state set, the concretization can
contain many (even infinitely many) elements, and thus induce many MCs. The
reachability probability P (;e) may differ from element to element. A counterex-
ample (s♯, A♯) is spurious if its concretization does not contain a pair (s,A) such
that the probability threshold is exceeded. In other words, a spurious counterex-
ample does not induce any concrete MC for which the probability measure of
reaching concrete e-states exceeds the specified threshold.

Definition 2. Let (s♯, A♯) be a counterexample for Reach≤p(e) in M♯. Then,
(s♯, A♯) is called realizable if there exists (s,A) ∈ γ(s♯, A♯) such that PA

s (;e) >
p. Otherwise we say that the counterexample is spurious.

Checking Counterexamples. Checking realizability of counterexamples is a
key element of the refinement procedure: If a counterexample turns out to be
realizable, the property is refuted with A playing the role of a counter-adversary
in the concrete model, which can be used for debugging purposes. Otherwise,
the abstract model is too coarse and additional predicates will need to be added
to eliminate the false negative.

Overall Idea. In the non-probabilistic setting, an abstract counterexample is a
single finite abstract path σ♯ starting in an abstract initial state. Its concretiza-
tion is a set of corresponding paths in the concrete model each of which starts
in some concrete initial state and respects the concrete transition relation. This
set might potentially be infinite. If it is empty, the counterexample is spurious.
It is common practice to check emptiness of the concretization by expressing the
behavior enforced on the concrete program by the abstract path implicitly by
a formula and checking the satisfiability of that formula [6, 7]. If the formula is
satisfied, then the concretization is non-empty, and we have found a concrete
counterexample violating the property. In this case, the counterexample is real-
izable. Otherwise, it is spurious, and additional predicates can be extracted from
the path σ♯ for refinement.

In the probabilistic setting, however, the situation is much more involved.
What makes the counterexample (s♯, A♯) realizable is a concrete initial state

s ∈ (I ∩ γ(s♯)) and adversary A such that the probability of reaching an e-state
in the thus induced concrete MC exceeds the given threshold p. All candidates
(s,A) are contained in γ(s♯, A♯) but this set might be infinite. We preprocess the
abstract counterexample using the strongest evidence idea of Katoen & Han [12].
They have devised a method that, for a given MC, can be used to construct the
smallest set of paths reaching e-states with an accumulated probability measure
above p. This fits well to our needs.

As the abstract counterexample (s♯, A♯) induces an abstract MC, we can
apply the algorithm from [12] yielding a finite set of finite paths in the quotient
automaton starting from state s♯, such that the probability measure exceeds p.
To check if the counterexample is spurious, our goal is then to compute how
much measure out of this set of paths can be reproduced in M with respect
to any (s,A) ∈ γ(s♯, A♯). If that is indeed larger than the threshold p for some
(s,A), we have found a realizable counterexample. Otherwise we may be able to
conclude that it is spurious, or conclude that more work is needed, as we will
explain below.

Spuriousness of Abstract Paths. Before coming to adversaries, we first explain
how to check if a single abstract path is realizable or spurious. Let (s♯, A♯) be

a counterexample and let σ♯ = (s♯
0, a0, u0, π

♯
0) (s♯

1, a1, u1, π
♯
1) . . . s♯

k be a path in

M♯

A♯ where s♯
0 = s♯ and s♯

k satisfies e. The concretization γ(σ♯) of an abstract

path σ♯ is a set of finite paths in M with consistent states, and the same update
and action labels, i.e. γ(σ♯) = {(s0, a0, u0, π0) . . . sk | (s0, . . . , sk) ² TF (σ♯)}
where TF (σ♯) is the trace formula which is defined by:

TF (σ♯) = I(X0) ∧
k

∧

i=0

F (s♯
i)(Xi) ∧

k−1
∧

i=0

(

g
ci

(Xi) ∧ Xi+1 = Eui
(Xi)

)

∧ e(Xk) .

WP(σ♯ = (s♯
0, ac0 , u0, π

♯
0) . . . s♯

k)

1: expσ♯ ← F (s♯
k) ∧ e

2: for (j = k .. 0) do

3: expσ♯ ← g
cj
∧F (s♯

j)∧WPuj
(expσ♯)

4: end for

5: return expσ♯ ∧ I

Fig. 1. WP of an abstract path σ♯

The measure of σ♯ under (s♯, A♯)

is
∏k−1

i=0 π♯
i (ui, s

♯
i+1). Note that the

paths in the concretization of σ♯ share
the same measure. The path σ♯ is
called realizable if its concretization
is non-empty, γ(σ♯) 6= ∅, otherwise
it is called spurious. As for the non-
probabilistic setting [7, 6], an abstract
path is realizable if its trace formula is satisfiable or, equivalently, its weakest
precondition. The weakest precondition of an abstract path is formalized in Fig-
ure 1 as the repeated application of the standard syntactic weakest precondition
WPE(e) where WPE(e) := e[X/E(X)] for an expression e and an update X′=E.

Lemma 1. For an abstract path σ♯, the following statements are equivalent: (i)
The weakest precondition WP(σ♯) of path σ♯ is satisfiable. (ii) The trace formula
TF (σ♯) of σ♯ is satisfiable. (iii) The path σ♯ is realizable, i.e. γ(σ♯) 6= ∅.

Checking Spuriousness. The counterexample (s♯, A♯) is guaranteed to be real-
izable if it has a concretization with sufficiently high measure. We assume a

nonempty set afp of abstract paths respecting (s♯, A♯). Note that corresponding
concrete paths may start in different initial states, so that the probability in the
concrete model is possibly lower. Let us consider an abstract path σ♯. For all
σ ∈ γ(σ♯) with σ = (s0, a0, u0, π0) . . . sk, the measure of the cylinder set C(σ)

under (s,A) ∈ γ(s♯, A♯) is given by
∏k−1

i=0 πi(ui, si+1) if s = s0, which is the same

as
∏k−1

i=0 π♯
i (ui, s

♯
i+1). For a set afp of abstract path we let γ(afp) =

⋃

σ♯∈afp γ(σ♯)
denote the union of the concretizations. Now an interesting issue arises: what
is the maximal probability measure of the set γ(afp) under some concretization
of γ(s♯, A♯). For illustration, consider the figure below where afp consists of two

disjoint abstract paths σ♯
1, σ

♯
2, but the intersection is empty: exp

σ
♯
1

∧ exp
σ

♯
2

= ∅,

hence only the maximum of both can be achieved.

u2, .8

a

u1, .2

u1, .2

a
u2, .8 s

♯
1

a

s
♯
2

s
♯
3

u1, .2

u2, .8

s
♯
4

We resolve this problem by using weakest preconditions of abstract paths. Given
an abstract path σ♯, the backwards algorithm in Figure 1 computes its weakest
precondition, i.e. those initial states in which a path from the concretization
of σ♯ starts. We use these weakest preconditions to obtain subsets of the given
set of abstract paths sharing a common concrete initial state. The subset with
maximal probability gives us the actual measure in the concrete model.

For afp = {σ♯
1, . . . , σ

♯
n}, let exp1, . . . , expn denote the weakest preconditions

returned by WP(σ♯
i). Moreover, for each of them the probability measure of

path σ♯
i is given as a weight, denoted by pi, which corresponds to the prob-

ability of the set γ(σ♯
i) starting from some initial state in expi. We now for-

mulate the problem of computing the realizable probability mass of a set of
abstract paths in terms of a weighted MAX-SMT [13] problem, which con-
sists in finding an assignment of X such that the total weight of the satisfied
expression is maximal. Formally, it is defined by: MaxSmt(exp1, . . . , expn) =
max

{
∑n

i=1JexpiKs · pi | s ∈ JI ∧ F (s♯)K
}

.

Lemma 2. Let (s♯, A♯) be a counterexample for Reach≤p(e), and let afp =

{σ♯
1, . . . , σ

♯
n} be a set of abstract paths with measure greater than p. It holds:

(i) MaxSmt(exp1, . . . , expn) > p implies that (s♯, A♯) is realizable,

(ii) MaxSmt(exp1, . . . , expn)+PA♯

s♯ (;e)−PA♯

s♯ (afp) ≤ p implies that the coun-
terexample (s♯, A♯) is spurious.

Let ε = PA♯

s♯ (;e) − PA♯

s♯ (afp) denote the probability of the set of abstract
paths which violate the property Reach≤p(e), but are not part of the set afp.
The lemma indicates that the decision algorithm is only partial: if the value
MaxSmt(exp1, . . . , expn) lies in the interval (p − ǫ, p], we are not sure whether
the counterexample (s♯, A♯) is spurious or realizable. By enlarging the set afp,

the ε can be made arbitrarily small. We will see later how this is exploited for
the CEGAR algorithm.

Obtaining Predicates. There are two sources of potential imprecision: spurious
abstract paths or a too coarse abstraction of the initial states.

Predicates to Remove Spurious Paths. Let (s♯, A♯) be a counterexample in M♯

A♯ .

Let σ♯ = (s♯
0, a0, u0, π

♯
0)(s

♯
1, a1, u1, π

♯
1) . . . s♯

k be a path such that s♯
0 = s♯ and

σ♯ satisfies ;e. Assume that σ♯ is spurious. Our goal is to find predicates to
eliminate the spurious abstract path. The abstract path resolves both nondeter-
ministic choice between different commands, and probabilistic choice between
different updates. That enables us to use standard techniques developed in the
non-probabilistic setting to find predicates. Here we employ interpolation and
apply it to the trace formula of the abstract path along the lines of [21].

Predicates to Separate Initial States. Observe the case where no path in afp is
spurious but the realizable probability of the paths is lower than the probability
threshold p, i.e., MaxSmt(exp1, . . . , expn) ≤ p. In this case, the initial state s♯

may be too coarse. To this end, we choose the maximal solution obtained from
MaxSmt. Let ψ− denote the conjunction of non-satisfied expi, and ψ+ denote
the conjunction of satisfied expi. Obviously, ψ− ∧ ψ+ is not satisfiable. Hence,
interpolants can be found to refine the abstraction of the initial states. Note
that this is a heuristic choice and does not guarantee removal of the abstract
counterexample.

CEGAR Algorithm. At the start of each iteration of the CEGAR loop, a quo-
tient automaton M♯ is built using the current set of predicates. We submit the
quotient automaton and the property to a probabilistic model checker. Due to
soundness of the abstraction, we can safely report success if the property is sat-
isfied in M♯. Otherwise the model checker produces an abstract counterexample
(s♯, A♯) which is passed to the counterexample analysis phase.

Counterexample analysis constitutes the next phase: Along the ideas of
strongest evidence [12], we maintain a sequence η = 〈σ1, σ2, ..., σn〉 of abstract
paths reaching an e-state in the MC induced by (s♯, A♯), an additional set afp ⊆ η
contains realizable paths in η. As illustrated in the diagram below, sequence η
is ordered by decreasing probability mass – a longer bar means higher probabil-
ity measure of the path; η is computed incrementally by a variant of best first
search [22] in a weighted graph obtained from the MC. Initially η contains only
the path with the highest probability, path σ1.

spurious

σ1 σ2 σ3 σ4 σ5

ProbA♯

s♯ (;e)

ProbA♯

s♯ (η)

ProbA♯

s♯ (afp)

First we check if path σ1 is realizable using Lemma 1 (in the diagram we as-
sume σ1 is spurious), and, if so, we add σ1 to the set of confirmed paths afp. If
enough “alleged” probability mass has already accumulated in afp to exceed the

threshold, i.e. PA♯

s♯ (afp) > p, we check how much of that probability is actually

0.1

s
♯
0 :

i=0
!bad s

♯
1 :

i<N
!bad0.9

N : int;

invar : N>2;

bad : bool;

module loop

i : int;

[a] !bad & i<N ->

0.9: (i’=i+1) +

0.1: bad’=(i=N-1)
end module

init !bad & i=0 endinit

0.1

0.9

0.9, 0.1

0.9, 0.1

s
♯
2 : bad

0<i<N

s
♯
3 : !bad

i>N

Fig. 2. Cycle program and the quotient automaton with respect to i=0,bad,i<N

realizable using Lemma 2. If the realizable probability mass exceeds the thresh-
old, the property is refuted, since we can report a realizable counterexample.
Otherwise we repeat the process with path σ2 that has the second highest prob-
ability: we add it to η, and check if it is realizable. If realizable, we add σ2 to afp.
We continue in this way until either we can refute the property or n−|afp| = C,
in which case we proceed to phase three. C is a verification parameter set by the
user, in the diagram we have C = 2.

In the third phase predicates are generated from spurious paths or from
weakest preconditions. Then the next iteration of the algorithm commences.

Toy example. Consider the program Cycle shown in the left part of Fig-
ure 2. The right part shows the quotient automaton with respect to pred-
icates i=0,bad,i<N where we omitted the actions and updates. Assume we
want to check Reach≤0 .3 (bad). In the quotient automaton, the probability of
reaching the bad state is 1.0. Let u0 denote the update i’=i+1. We start with
the abstract path with (highest) probability 0.81 (distributions are omitted):

σ♯ = (s♯
0, a, u0)(s

♯
1, a, u0)s

♯
2. Obviously, this path is not realizable as witnessed

by the unsatisfiability of its trace formula ψ (see Lemma 1). Taking C = 1,
we apply Lemma 2 from which we conclude that we have a spurious counterex-
ample. To remove the spurious path σ♯, we apply interpolation to the trace
formula ψ, i.e. we compute a simplification of its prefix ψ−

1 := N > 2 ∧ i0 =
0 ∧ ¬bad0 ∧ i1 = i0 + 1 ∧ bad1 = bad0 ∧ i1 < N ∧ ¬bad1 that is disjoint with its
postfix ψ+

1 := i2 = i1 + 1 ∧ bad2 = bad1 ∧ i2 ≥ N ∧ bad2. As an interpolant we
obtain i < N−1, add it as a fresh predicate and restart. In the ensuing iteration,
the property is established.

4 Experimental results

We have implemented a prototype of probabilistic CEGAR within the predicate
abstraction tool PASS [9]. It is is written in C++ and interfaces to the SMT
solver Yices [23] which also supports MAX-SMT. PASS uses CEGAR to ob-
tain predicates based on the interpolant-generating theorem prover FOCI [24].
Experiments were run on a PentiumTM IV 2.6 GHz with 1.5 GB RAM.

Case study

(parameters)
Conventional Abstraction

Property states trans time states trans refs predspaths time
5 315 k=3 5,195K 11,377K 93 34K 36K 9 120 604 72

WLAN 6 315 k=3 12,616K 28,137K 302 34K 42K 9 116 604 88
(BOFF T) 6 315 k=6 12,616K 28,137K 2024 771K 113K 9 182 582 306

6 9500 k=6 – – TO 771K 113K 9 182 582 311
3 p1 41K 52K 10 1K 2K 8 58 28 9

CSMA/CD 4 p1 124K 161K 56 6K 9K 14 100 56 38
(BOFF) 3 p2 41K 52K 10 0.5K 0.9K 12 41 28 10

4 p2 124K 161K 21 0.5K 1.5K 12 41 44 11
16 3 p1 2K 3K 5.4 2K 3K 9 46 41 9

BRP 32 5 p1 5K 7K 12 5K 7K 9 64 111 21
(N MAX) 64 5 p1 10K 14K 26 10K 14K 8 95 585 91

>16 3 p4 ∞ – – 0.5K 0.9K 7 26 17 3
>16 4 p4 ∞ – – 0.6K 1K 7 27 17 4
>16 5 p4 ∞ – – 0.7K 1K 8 28 18 5

SW goodput ∞ – – 5K 11K 3 40 7 87
timeout ∞ – – 27K 44K 3 49 6 89

Table 1. Statistics. Shown on the left are model parameters and properties studied. On the right
we display, apart from reachable state numbers, number of transitions (non-zero entries in transition
matrix), and computation time, the number of iterations of the CEGAR loop (refs), of predicates
generated (preds), and of abstract paths analyzed (paths). The number of states and transitions are
given in thousands, i.e. 34K means 34,000.

We consider a selection of case studies summarized in Table 1. Time is mea-
sured in seconds. The timeout limit was set to two hours (timeout is indicated
by TO). We have analyzed the finite-state models with PRISM 3.1.1 (column
“Conventional”) in comparison with PASS (column “Abstraction”). PRISM is
the leading finite-state probabilistic model checker. All models except for the
Sliding Window protocol are taken from the PRISM web repository and can
be scaled via different parameters. Unconstrained parameters yield infinite-state
models (denoted by “∞”). Surprisingly, although our method only guarantees
upper bounds on probabilities in general, probabilities obtained for all case stud-
ies are tight upper bounds: they agree with those of PRISM for finite models.

IEEE 802.11 Wireless LAN Protocol (WLAN). The protocol is parameterized
with an exponential back-off counter limit BOFF and a maximal package send
time of T µs. We checked the property: ”The maximum probability that either
station’s back-off counter reaches k” for k=3 and k=6. As shown in Table 1,
increasing BOFF from 5 to 6 leads to an exponential increase in model size and
running time in PRISM, while in PASS the row is identical for BOFF=5 and
BOFF=6. This is because states with back-off counter higher than three can
reach a goal state (via a reset), however they do not lie on paths with maximal
probability. Hence refinement never splits abstract states with respect to back-
offs beyond three. Similarly, for fixed value of BOFF, PASS scales much better
in comparison to PRISM with respect to different values of T.

IEEE 802.3 CSMA/CD Protocol (CSMA/CD). Similar to the WLAN protocol,
CSMA/CD is parameterized with an exponential back-off counter limit BOFF.
We analyzed the properties: (p1): ”The maximum probability that both stations
deliver”, and (p2): ”The message of any station eventually delivered before 1
backoff”. For both properties, as shown in the table, the abstract state space
is significantly smaller. Consider property p2. Similar to the WLAN protocol,
the size of the abstraction does not change with respect to the size of BOFF.
However, the number of paths explored increases with BOFF. The reason is that

for greater values of BOFF, there is more branching in the probabilistic model,
thus in the abstraction there are more abstract paths being explored.

Bounded Retransmission Protocol (BRP). The BRP protocol has two parame-
ters: N denotes the length of the file to be transmitted, and MAX denotes the
maximal number of retransmissions. We have studied “Property 1” and “Prop-
erty 4” (p1 and p4 in the table). On p1, PRISM outperforms PASS. It appears
that this is due to little opportunity for abstraction as, seemingly, a lot of model
detail is relevant and has to be discovered by refinement. On the other hand,
p4 can be analyzed for an infinite parameter range with PASS, since it is an
invariant property with respect to the file length N . Thus the constraint N > 16
allows us to verify the property for any possible file length greater than 16.

Sliding Window (SW). This is the standard protocol with lossy channels over an
unbounded domain of sequence numbers. Thus the model is infinite and hence we
have no comparison to PRISM. We checked goodput properties which consider
the difference between the number of sent and received packages. We want to
know the probability that the number of sent packages exceeds the number of
received packages by a particular constant. PASS checked that, at any time, the
probability of the difference exceeding three is at most three percent for windows
size four. The second property concerns the probability of a protocol timeout.

Initial Predicates. Probabilistic CEGAR leaves the choice of the initial set of
predicates as a parameter. Predicates appearing in the property under study are
the minimal option and generally a good one (BRP, CSMA). Further, control
locations of the program might also be part of the initial abstraction to avoid non-
determinism between commands in the abstraction. Thus adding predicates from
the initial condition (WLAN) or additionally from guards (SW) can improve
running times. PASS features several automatic modes; Table 1 contains data
obtained via the respective best mode.

Discussion. To compete with PRISM on finite models, the benefit of state
space reduction has to offset the cost of repeating the CEGAR loop. On infinite
or very large models only PASS can be used. We observe that abstraction for
WLAN and CSMA/CD, PASS is superior to the conventional approach, due to
the significantly smaller abstract state space. Notably the analysis of BRP for
N > 16 can be considered a parametric analysis: p4 is proven for any such N .

5 Conclusion

This paper explores fundamental questions and pragmatic issues of probabilistic
abstraction refinement. The main contribution lies in our treatment of abstract
counterexamples which are finite Markov chains, instead of finite paths. Spuri-
ous counterexamples are analyzed with interpolation-based predicate inference,
leading to a refined model which closes the CEGAR loop. The resulting theory
and tool work smoothly, as shown by our experimental evaluation. Our next goal
is to enable model checking of full PCTL.

Acknowledgements. Thanks to E. Moritz Hahn for helping us with the imple-
mentation, and to the anonymous reviewers for their valuable comments.

References

1. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability.
Formal Asp. Comput. 6 (1994) 512–535

2. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: FSTTCS. (1995) 499–513

3. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for
Automatic Verification of Probabilistic Systems. In: TACAS. (2006) 441–444

4. Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
QEST. (2005) 243–244

5. Graf, S., Sáıdi, H.: Construction of Abstract State Graphs with PVS. In: CAV.
(1997) 72–83

6. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL. (2002) 1–3

7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL.
(2002) 58–70

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: CAV. (2000) 154–169

9. Wachter, B., Zhang, L., Hermanns, H.: Probabilistic Model Checking Modulo
Theories. In: QEST. (2007) 129–138

10. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2 (1995) 250–273

11. Krishnendu Chatterjee, Thomas A. Henzinger, R.J., Majumdar, R.:
Counterexample-Guided Planning. In: UAI. (2005)

12. Han, T., Katoen, J.P.: Counterexamples in probabilistic model checking. In:
TACAS. (2007) 60–75

13. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43 (1991) 425–440

14. McMillan, K.L.: Lazy abstraction with interpolants. In: CAV. (2006) 123–136
15. Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic

reachability. In: FORMATS. (2005) 177–195
16. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and Refine-

ment Strategies for Probabilistic Analysis. In: PAPM-PROBMIV. (2002) 57–76
17. de Alfaro, L., Roy, P.: Magnifying-lens abstraction for markov decision processes.

In: CAV. (2007) 325–338
18. Kwiatkowska, M., Norman, G., Parker, D.: Game-based Abstraction for Markov

Decision Processes. In: QEST. (2006) 157–166
19. Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: SPIN.

(2006) 71–88
20. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons (1994)
21. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from

proofs. In: POPL. (2004) 232–244
22. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality

af A*. J. ACM 32 (1985) 505–536
23. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In:

CAV. (2006) 81–94
24. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345 (2005)

101–121

